Journal of Cluster Science

, Volume 22, Issue 4, pp 633–646 | Cite as

1,ω-Bis(pyridinium)alkane Cation as Templates for the Self-Assembly of the Mo(W)/S/Cu Polymeric Clusters

Original Paper


Self-assembly of a series of effective cation-templates with [Mo(W)/Cu/S]-based clusters was studied. Permanent templated products {(bppp)[MoOS3Cu3I3(4,4′-bipy)1.5]}n (1), {(bpbt)[MoOS3Cu3I3(4,4′-bipy)1.5]}n (2), {(bppp)[WOS3Cu3I3(4,4′-bipy)1.5]}n (3), and {(bpbt)[WOS3Cu3Br3(4,4′-bipy)1.5]}n (4) show 1D anionic zigzag pattern (bppp = 1,3-bis(pyridinium) propane, bpbt = 1,4-bis(pyridinium) butane). Compounds 14 have been characterized by single-crystal X-ray diffraction, elemental analysis, IR, UV–vis and thermogravimetric Analysis. The results may provide fascinating insights into template effects on the construction of the cluster-based coordination polymers and that coordination modes of compounds 3 and 4 have not been found in the reported one-dimensional zigzag coordination polymers.


Cationic template Metal-sulfur clusters UV–vis absorption spectra Thermogravimetric analysis 


  1. 1.
    M.-C. Thompson and D.-H. Busch (1962). J. Am. Chem. Soc. 84, 1762.CrossRefGoogle Scholar
  2. 2.
    M.-C. Thompson and D.-H. Busch (1964). J. Am. Chem. Soc. 86, 3651.CrossRefGoogle Scholar
  3. 3.
    G.-A. Melson and D.-H. Busch (1965). J. Am. Chem. Soc. 87, 1706.CrossRefGoogle Scholar
  4. 4.
    P. Miro, S. Pierrefixe, M. Gicquel, A. Gil, and C. Bo (2010). J. Am. Chem. Soc. 132, 17787.CrossRefGoogle Scholar
  5. 5.
    H. Zhang, X.-M. Wang, K.-C. Zhang, and B.-K. Teo (1999). Coord. Chem. Rev. 183, 157.CrossRefGoogle Scholar
  6. 6.
    Z.-M. Wang, X.-Y. Zhang, S.-R. Batten, M. Kurmoo, and S. Gao (2007). Inorg. Chem. 21, 8439–8441.CrossRefGoogle Scholar
  7. 7.
    T.-J. Hubin and D.-H. Busch (2000). Coord. Chem. Rev. 205, 201–228.CrossRefGoogle Scholar
  8. 8.
    Y.-Q. Tian, Z.-X. Chen, L.-H. Weng, H.-B. Guo, S. Gao, and D.-Y. Zhao (2004). Inorg. Chem. 43, 4631–4635.CrossRefGoogle Scholar
  9. 9.
    H. Ralf and V. Fritz (1994). Angew. Chem. Int. Ed. Engl. 33, 375.CrossRefGoogle Scholar
  10. 10.
    A. Shanzer and J. Libman (1983). J. Chem. Soc. Chem. Commun. 846–847.Google Scholar
  11. 11.
    A. Shanzer, J. Libman, and F. Frolow (1981). J. Am. Chem. Soc. 103, 7339.CrossRefGoogle Scholar
  12. 12.
    Y.-Y. Niu, H.-G. Zheng, H.-W. Hou, and X.-Q. Xin (2004). Coord. Chem. Rev. 248, 169.CrossRefGoogle Scholar
  13. 13.
    W.-H. Zhang, Y.-L. Song, Z.-G. Ren, H.-X. Li, L–. L. Li, Y. Zhang, and J.-P. Lang (2007). Inorg. Chem. 46, 6647.CrossRefGoogle Scholar
  14. 14.
    J.-P. Lang, Q.-F. Xu, R.-X. Yuan, and B.-F. Abrahams (2004). Angew. Chem. Int. Ed. 4, 4741.CrossRefGoogle Scholar
  15. 15.
    Q.-F. Xu, J.-X. Chem, W.-H. Zhang, Z.-G. Ren, H.-X. Li, Y. Zhang, and J.-P. Lang (2006). Inorg. Chem. 45, 4055.CrossRefGoogle Scholar
  16. 16.
    J.-P. Lang, Q.-F. Xu, Z.-N. Chen, and B.-F. Abrahams (2003). J. Am. Chem. Soc. 125, 12682.CrossRefGoogle Scholar
  17. 17.
    K. Liang, H.-G. Zheng, Y.-L. Song, M.-F. Lappert, X.-Q. Xin, Z.-X. Huang, J.-T. Chen, and S.-F. Lu (2004). Angew. Chem. Int. Ed. 43, 5776.CrossRefGoogle Scholar
  18. 18.
    H.-G. Zheng, W.-H. Leung, W.-L. Tan, D.-L. Long, W. Ji, J.-T. Chen, F.-B. Xin, and X.-Q. Xin (2000). J. Chem. Soc., Dalton Trans. 2145–2149.Google Scholar
  19. 19.
    J.-P. Lang, C.-M. Jiao, S.-B. Qiao, W.-H. Zhang, and B.-F. Abrahams (2005). Inorg. Chem. 44, 3664.CrossRefGoogle Scholar
  20. 20.
    W.-H. Zhang, Y.-L. Song, Y. Zhang, and J.-P. Lang (2008). Cryst. Growth Des. 8, 253–258.CrossRefGoogle Scholar
  21. 21.
    N.-N. Ding, W.-H. Zhang, H.-X. Li, Z.-G. Ren, J.-P. Lang, Y. Zhang, and B.-F. Abrahams (2007). Inorg. Chem. Commun. 10, 623.CrossRefGoogle Scholar
  22. 22.
    J.-F. Zhang, S.-C. Meng, and Y.-L. Song (2011). Cryst. Growth Des. 11, 100.CrossRefGoogle Scholar
  23. 23.
    H.-W. Hou, H.-G. Zheng, H.-G. Ang, and Y.-T. Fan (1999). J. Chem. Soc., Dalton Trans. 2953–2957.Google Scholar
  24. 24.
    J.-P. Lang, H. Kawaguchi, and K. Tatsumi (1999). Chem. Commun. 2315–2316.Google Scholar
  25. 25.
    G.-H. Escamilla and G.-R. Newkome (1994). Angew. Chem. Int. Ed. Engl. 33, 1937.CrossRefGoogle Scholar
  26. 26.
    J.-H. Fuhrhop, J. Koning, and F.-J. Stoddart, Membranes and Molecular Assemblies (The Royal Society of Chemistry, Cambridge, 1994).Google Scholar
  27. 27.
    F. Neve and A. Crispini (2001). Cryst. Growth Des. 1, 387.CrossRefGoogle Scholar
  28. 28.
    Y.-Y. Niu, B.-L. Wu, X.-L. Guo, Y.-L. Song, X.-C. Liu, H.-Y. Zhang, H.-W. Hou, C.-Y. Niu, and S.-W. Ng (2008). Cryst. Growth Des. 8, 2393.CrossRefGoogle Scholar
  29. 29.
    X.-R. Lv, F.-K. Zhao, X.-L. Guo, Y.-Y. Niu, N. Xu, and H.-W. Hou (2009). Inorg. Chem. Commun. 12, 653.CrossRefGoogle Scholar
  30. 30.
    Y. Han, Z. H. Zhang, Y. Y. Liu, Y. Y. Niu, D. G. Ding, B. L. Wu, H. W. Hou, and Y. T. Fan (2011). Cryst. Growth Des. doi: 10.1021/cg200250m.
  31. 31.
    Y. Y. Niu, L. F. Wang, X. R. Lv, H. J. Du, Y. Z. Qiao, H. M. Wang, L. S. Song, B. L. Wu, H. W. Hou, and S. W. Ng. (2011). CrystEngComm. 13, 5071.CrossRefGoogle Scholar
  32. 32.
    J.-X. Chen, X.-Y. Tang, Y. Chen, W.-H. Zhang, L.-L. Li, R.-X. Yuan, R. Zhang, and J.-P. Lang (2009). Cryst. Growth Des. 9, 146.Google Scholar
  33. 33.
    W.-H. Zhang, Y.-L. Song, Z.-H. Wei, L.-L. Li, Y.-J. Huang, and J.-P. Lang (2008). Inorg. Chem. 47, 5332.CrossRefGoogle Scholar
  34. 34.
    J.-W. McDonland, G.-D. Friesen, L.-D. Rosenhein, and W.-E. Newton (1983). Inorg. Chim. Acta. 72, 205.CrossRefGoogle Scholar
  35. 35.
    K. L. Ng. Clarissa, S. Vatsala, and W. Fred (2007). Bioorg. Med. Chem. 15, 3422.CrossRefGoogle Scholar
  36. 36.
    G.-M. Sheldrick, in SHELXL93 (University of Göttingen, Göttingen, Germany, 1993).Google Scholar
  37. 37.
    K. Liang, H.-G. Zheng, Y.-L. Song, Y.-Z. Li, and X.-Q. Xin (2007). Cryst. Growth Des. 7, 373.CrossRefGoogle Scholar
  38. 38.
    J.-X. Chen, X.-Y. Tang, Y. Chen, W.-H. Zhang, L.-L. Li, R.-X. Yuan, Y. Zhang, and J.-P. Lang (2009). Cryst. Growth Des. 9, 1461.CrossRefGoogle Scholar
  39. 39.
    Y.-L. Ji, C.-Y. Xian, Y.-Z. Li, and H.-G. Zheng (2008). Chin. J. Inorg. Chem. 24, 1543.Google Scholar
  40. 40.
    J.-X. Chen, Y. Chen, X.-Y. Tang, A.-X. Zheng, Y. Zhang, and J.-P. Lang (2009). Chin. J. Inorg. Chem. 25, 929.Google Scholar
  41. 41.
    J.-P. Lang, H. Kawaguchi, S. Ohnishi, and K. Tatsumi (1998). Inorg. Chim. Acta. 283, 136.CrossRefGoogle Scholar
  42. 42.
    S. Sharma, M. Chandra, and D.-S. Pandey (2004). Eur. J. Inorg. Chem. 3555–3563.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringXinxiang UniversityXinxiangPeople’s Republic of China

Personalised recommendations