Journal of Cluster Science

, Volume 22, Issue 1, pp 73–85 | Cite as

Two New Extended Frameworks Constructed from the Sandwiching Polytungstoantimonate Clusters

  • Bao-Wang Chen
  • Wei-Lin Chen
  • Yang-Guang Li
  • En-Bo Wang
Original Paper


Two new tungstoantimonates Na4H2[{Co(H2O)3}2Co(H2O)2W(H2O)2 (B-β-SbW9O33)2]·33H2O (1) and H4[Mn2(H2O)8Mn3.5(H2O)7W0.5(H2O)(B-β-SbW9O33)2]·20H2O (2) have been obtained by the routine synthetic reactions in the aqueous solutions and characterized by elemental analysis, IR, TG analysis. Compound 1 is built from the sandwich-type polyoxoanions [{Co(H2O)3}2Co(H2O)2W(H2O)2(B-β-SbW9O33)2]6−, linked by Na+ cations to construct a 1-D chain-like structure. Compound 2 shows an interesting 2-D structure built up from sandwich-type anions [Mn3.5(H2O)7W0.5(H2O)(B-β-SbW9O33)2]8− linked by additional Mn2+ ions, which represents the first example of pure inorganic 2-D structure based on the Mn-containing sandwich-type polytungstoantimonate clusters. The electrochemical and photochemical catalysis activities of compounds 1 and 2 have also been investigated.


Polyoxometalates Sandwich-type structure Extended structure Photochemical catalysis 



This work was supported by the National Natural Science Foundation of China (No. 20701005), the Postdoctoral Station Foundation of Ministry of Education (No. 20060200002), Science and Technology Creation Foundation of Northeast Normal University (NENU-STC07009) and the Testing Foundation of Northeast Normal University.

Supplementary material

10876_2011_360_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2300 kb)


  1. 1.
    C. L. Hill (1998). Chem. Rev. 98, 1.CrossRefGoogle Scholar
  2. 2.
    D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105.CrossRefGoogle Scholar
  3. 3.
    Z. M. Zhang, E. B. Wang, Y. F. Qi, Y. G. Li, B. D. Mao, and Z. M. Su (2007). Cryst. Growth Des. 7, 1305.CrossRefGoogle Scholar
  4. 4.
    E. Coronado and C. J. Gómez-García (1998). Chem. Rev. 98, 273.CrossRefGoogle Scholar
  5. 5.
    C. L. Hill (2007). J. Mol. Catal. A Chem. 262, 1.CrossRefGoogle Scholar
  6. 6.
    M. T. Pope (2003). Comput. Coord. Chem. II 4, 635.Google Scholar
  7. 7.
    N. Zamstein, A. Tarantul, and B. Tsukerblat (2007). Inorg. Chem. 46, 8851.CrossRefGoogle Scholar
  8. 8.
    T. J. R. Weakley and R. G. Finke (1990). Inorg. Chem. 29, 1235.CrossRefGoogle Scholar
  9. 9.
    L. H. Bi, E. B. Wang, J. Peng, R. D. Huang, L. Xu, and C. W. Hu (2000). Inorg. Chem. 39, 671.CrossRefGoogle Scholar
  10. 10.
    Weakly TJR, Evans HT, Showell JS, Tourné GF, and Tourné CM (1973). J. Chem. Soc. Chem. Commun. 139.Google Scholar
  11. 11.
    U. Kortz, S. Isber, M. H. Dickman, and D. Ravot (2000). Inorg. Chem. 39, 2915.CrossRefGoogle Scholar
  12. 12.
    F. Robert, M. Leyrie, and G. Hervé (1982). Acta Crystallogr. Sect. B 38, 358.CrossRefGoogle Scholar
  13. 13.
    U. Kortz, N. K. Al-Kassem, M. G. Savelieff, N. A. Al Kadi, and M. Sadakane (2001). Inorg. Chem. 40, 4742.CrossRefGoogle Scholar
  14. 14.
    U. Kortz, S. Nellutla, A. C. Stowe, N. S. Dalal, J. V. Tol, and B. S. Bassil (2004). Inorg. Chem. 43, 144.CrossRefGoogle Scholar
  15. 15.
    B. Botar, T. Yamase, and E. Ishikawa (2001). Inorg. Chem. Commun. 4, 551.CrossRefGoogle Scholar
  16. 16.
    I. Loose, E. Droste, M. Bösing, H. Pohlmann, M. H. Dickman, C. Rosu, M. T. Pope, and B. Krebs (1999). Inorg. Chem. 38, 2688.CrossRefGoogle Scholar
  17. 17.
    U. Kortz, M. G. Savelieff, B. S. Bassil, B. Keita, and L. Nadjo (2002). Inorg. Chem. 41, 783.CrossRefGoogle Scholar
  18. 18.
    E. M. Limanski, D. Drewes, E. Droste, R. Bohner, and B. Krebs (2003). J. Mol. Struct. 656, 17.CrossRefGoogle Scholar
  19. 19.
    D. Drewes, E. M. Limanski, M. Piepenbrink, and B. Krebs (2004). Z. Anorg. Allg. Chem. 630, 58.CrossRefGoogle Scholar
  20. 20.
    R. G. Finke, B. Rapko, and T. J. R. Weakley (1989). Inorg. Chem. 28, 1573.CrossRefGoogle Scholar
  21. 21.
    W. H. Knoth, P. J. Domaille, and R. D. Farlee (1985). Organometallics 4, 62.CrossRefGoogle Scholar
  22. 22.
    F. B. Xin and M. T. Pope (1996). J. Am. Chem. Soc. 118, 7731.CrossRefGoogle Scholar
  23. 23.
    J. D. Compain, P. Mialane, A. Dolbecq, I. M. Mbomekallé, J. Marrot, F. Sécheresse, C. Duboc, and E. Rivière (2010). Inorg. Chem. 49, 2851.CrossRefGoogle Scholar
  24. 24.
    S. Reinoso and J. R. Galán-Mascarós (2010). Inorg. Chem. 49, 377.CrossRefGoogle Scholar
  25. 25.
    C. Y. Sun, S. X. Liu, C. L. Wang, L. H. Xie, C. D. Zhang, B. Gao, Z. M. Su, and H. Q. Jia (2006). J. Mol. Struct. 785, 170.CrossRefGoogle Scholar
  26. 26.
    B. S. Bassil, U. Kortz, A. S. Tigan, J. M. Clemente-Juan, B. Keita, P. de Oliveira, and L. Nadjo (2005). Inorg. Chem. 44, 9360.CrossRefGoogle Scholar
  27. 27.
    L. Lisnard, P. Mialane, A. Dolbecq, J. Marrot, J. M. Clemente-Juan, E. Coronado, B. Keita, P. de Oliveira, L. Nadjo, and F. Sécheresse (2007). Chem Eur J 13, 3525.CrossRefGoogle Scholar
  28. 28.
    Chen WL, Li YG, Wang YH, and Wang EB (2007). Eur. J. Inorg. Chem. 15:2216.Google Scholar
  29. 29.
    W. L. Chen, B. W. Chen, Y. G. Li, Y. H. Wang, and E. B. Wang (2009). Inorg. Chim. Acta 362, 5043.CrossRefGoogle Scholar
  30. 30.
    J. P. Wang, P. T. Ma, J. Li, H. Y. Niu, and J. Y. Niu (2008). Chem .Asian J. 3, 822.CrossRefGoogle Scholar
  31. 31.
    H. Liu, C. Qin, Y. G. Wei, L. Xu, G. G. Gao, F. Y. Li, and X. S. Qu (2008). Inorg. Chem. 47, 4166.CrossRefGoogle Scholar
  32. 32.
    L. H. Bi, B. Li, Y. Y. Bo, and L. X. Wu (2009). Inorg. Chim. Acta 362, 1600.CrossRefGoogle Scholar
  33. 33.
    S. Yao, Z. M. Zhang, Y. G. Li, and E. B. Wang (2009). Inorg. Chem. Commun. 12, 937.CrossRefGoogle Scholar
  34. 34.
    W. Zhang, S. X. Liu, D. Feng, C. D. Zhang, P. Sun, and F. J. Ma (2009). J. Mol. Struct. 963, 194.CrossRefGoogle Scholar
  35. 35.
    M. Bösing, I. Loose, H. Pohlmann, and B. Krebs (1997). Chem. Eur. J. 3, 1232.CrossRefGoogle Scholar
  36. 36.
    G. M. Sheldrick SHELXL-97, program for crystal structure refinement (University of Göttingen, Germany, 1997).Google Scholar
  37. 37.
    G. M. Sheldrick SHELXL-97, program for crystal structure solution (University of Göttingen, Germany, 1997).Google Scholar
  38. 38.
    T. Steiner (2003). Crystallogr. Rev. 9, 177.CrossRefGoogle Scholar
  39. 39.
    S. Parkin, B. Moezzi, and H. Hope (1995). J. Appl. Cryst. 28, 53.CrossRefGoogle Scholar
  40. 40.
    H. Q. Tan, W. L. Chen, Y. G. Li, D. Liu, L. M. Chen, and E. B. Wang (2009). J. Solid State Chem. 182, 465.CrossRefGoogle Scholar
  41. 41.
    L. Han, P. P. Zhang, H. S. Liu, H. J. Pang, Y. Chen, and J. Peng (2010). J. Clust. Sci. 21, 81.CrossRefGoogle Scholar
  42. 42.
    L. H. Bi, B. Li, L. X. Wu, and Y. Y. Bao (2009). Inorg. Chim. Acta 362, 3309.CrossRefGoogle Scholar
  43. 43.
    U. Kortz, I. M. Mbomekalle, B. Keita, L. Nadjo, and P. Berthet (2002). Inorg. Chem. 41, 6412.CrossRefGoogle Scholar
  44. 44.
    I. M. Mbomekalle, B. Keita, M. Nierlich, U. Kortz, P. Berthet, and L. Nadjo (2003). Inorg. Chem. 42, 5143.CrossRefGoogle Scholar
  45. 45.
    Z. M. Zhang, S. Yao, E. B. Wang, Q. Shi, and H. Zhang (2008). J. Clust. Sci. 19, 521.CrossRefGoogle Scholar
  46. 46.
    Z. M. Zhang, E. B. Wang, W. L. Chen, and H. Q. Tan (2007). Aust. J. Chem. 60, 284.CrossRefGoogle Scholar
  47. 47.
    X. Y. Zhang, C. J. O’Connor, G. B. Jameson, and M. T. Pope (1996). Inorg. Chem. 35, 30.CrossRefGoogle Scholar
  48. 48.
    L. L. Li, Y. Chu, Y. Liu, and L. H. Dong (2007). J. Phys. Chem. C 111, 2123.CrossRefGoogle Scholar
  49. 49.
    H. B. Fu, C. S. Pan, W. Q. Yao, and Y. F. Zhu (2005). J. Phys. Chem. B 109, 22432.CrossRefGoogle Scholar
  50. 50.
    M. C. Yin, Z. S. Li, J. H. Kou, and Z. G. Zou (2009). Environ. Sci .Technol. 43, 8361.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bao-Wang Chen
    • 1
  • Wei-Lin Chen
    • 1
  • Yang-Guang Li
    • 1
  • En-Bo Wang
    • 1
  1. 1.Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations