Journal of Cluster Science

, Volume 21, Issue 4, pp 803–811 | Cite as

Hydrothermal Synthesis and Crystal Structure of a New 2-D Organic–Inorganic Hybrid Wells–Dawson-Type Polyoxometalate

Original Paper


A new 2-D organic–inorganic hybrid Wells–Dawson-Type polyoxotungstate K[Cu(Im)2]6P2W18O62·2H2O·(OH) (Im = Imidazole) (1) has been synthesized under hydrothermal conditions and characterized by IR spectroscopy, TG, and single crystal X-ray structural analysis. Crystal data for 1: triclinic, P-1, a = 15.3676(12) Å, b = 15.5059(14) Å, c = 24.6437(19) Å, α = 98.088(2)°, β = 96.930(2)°, γ = 119.312(2)°, Z = 2. Single crystal X-ray structural analysis reveals that the [P2W18O62]6− polyoxoanion is linked by [Cu(Im)2]+ cation to form a 1-D chain along the a axis which is connected by K+ cation down the c axis to form a 2-D layer.

Graphical Abstract

A new organic–inorganic hybrid Wells–Dawson-Type polyoxotungstate K[Cu(Im)2]6P2W18O62·2H2O·(OH) (Im = Imidazole) (1) has been synthesis under hydrothermal conditions. Compound 1 exhibits a 2D zigzag layer structure based on [P2W18O62]6− polyoxoanion units linked by [Cu(Im)2]+ and K+ cation.


Hydrothermal synthesis Crystal structure Organic–inorganic hybrid Polyoxometalates Wells–Dawson Copper 



The authors are thankful for the financial supports from the National Natural Science Fund for Distinguished Young Scholars of China (no. 20725101), the NNSF of China (no. 50872133), the 973 Program (no. 2006CB932904), the NSF of Fujian Province (nos. E0510030 and 2008F3120) and the Knowledge Innovation Program from CAS (no. KJCX2.YW.H01).


  1. 1.
    M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).Google Scholar
  2. 2.
    C.-L. Hill (ed.) (1998). Special issue on polyoxometalates. Chem. Rev. 98, 1.Google Scholar
  3. 3.
    M. T. Pope and A. Müller (eds.) Polyoxometalate Chemistry from Topology via Self-Assembly to Applications (Kluwer Academic Publishers, Dordrecht, 2001).Google Scholar
  4. 4.
    H. An, Y. Li, E. Wang, D. Xiao, C. Sun, and L. Xu (2005). Inorg. Chem. 44, 6062.CrossRefGoogle Scholar
  5. 5.
    M. Wei, C. He, M. Hua, C. S. Li, and Q. J. Meng (2006). J. Am. Chem. Soc. 128, 13318.CrossRefGoogle Scholar
  6. 6.
    P.-J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. 38, 2638.CrossRefGoogle Scholar
  7. 7.
    W.-B. Yang, C.-Z. Lu, and H.-H. Zhuang (2002). J. Chem. Soc. Dalton Trans. 2879.Google Scholar
  8. 8.
    L. Lisnard, A. Dolbecq, P. Mialane, J. Marrot, E. Codjovi, and F. Secheresse (2005). Dalton Trans. 3913.Google Scholar
  9. 9.
    J.-Q. Sha, J. Peng, A.-X. Tian, H. S. Liu, and J. Chen (2007). Cryst. Growth Des. 7, 2535.CrossRefGoogle Scholar
  10. 10.
    Y.-P. Ren, X.-J. Kong, R.-B. Huang, L. S. Zheng, and L.-S. Long (2006). Cryst. Growth Des. 6, 572.CrossRefGoogle Scholar
  11. 11.
    B.-Z. Lin, Y.-M. Chen, and P.-D. Liu (2003). Dalton Trans. 474.Google Scholar
  12. 12.
    H. Jin, E.-B. Wang, Y.-G. Li, X.-L. Wang, C. Qin, and S. Chang (2006). Cryst. Growth Des. 6, 2693.CrossRefGoogle Scholar
  13. 13.
    S.-T. Zheng, J. Zhang, and G.-Y. Yang (2008). Angew. Chem. Int. Ed. 47, 3909.CrossRefGoogle Scholar
  14. 14.
    J.-W. Zhao, J. Zhang, S.-T. Zheng, and G.-Y. Yang (2008). Chem. Commun. 570.Google Scholar
  15. 15.
    J.-W. Zhao, H.-P. Jia, J. Zhang, S.-T. Zheng, and G.-Y. Yang (2007). Chem. Eur. J. 13, 10030.CrossRefGoogle Scholar
  16. 16.
    S.-T. Zheng, J. Zhang, J. M. Clemente-Juan, D.-Q. Yuan, and G.-Y. Yang (2009). Angew. Chem. Int. Ed. 48, 7176.CrossRefGoogle Scholar
  17. 17.
    R. Contant (1990). Inorg. Synth. 27, 108.CrossRefGoogle Scholar
  18. 18.
    G. M. Sheldrick SADABS, Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, Germany, 1997).Google Scholar
  19. 19.
    G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Germany, 1997).Google Scholar
  20. 20.
    G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Germany, 1997).Google Scholar
  21. 21.
    J. Fan, H.-F. Zhu, T. Okamura, W.-Y. Sun, W.-X. Tang, and N. Ueyama (2003). Chem. Eur. J. 9, 4724.CrossRefGoogle Scholar
  22. 22.
    K.-L. Zhang, Y.-J. Shi, S. Gao, Y.-D. Dai, K.-B. Yu, and X.-Z. You (2004). Inorg. Chem. Commun. 7, 584.CrossRefGoogle Scholar
  23. 23.
    J. Plévert, T. M. Gentz, A. Laine, H. L. Li, V. G. Young, O. M. Yaghi, and M. O’Keeffe (2001). J. Am. Chem. Soc. 123, 12706.CrossRefGoogle Scholar
  24. 24.
    K. E. Christensen, C. Bonneau, M. Gustafsson, L. Shi, J. Sun, J. Grins, K. Jansson, I. Sbille, B. Su, and X. Zou (2008). J. Am. Chem. Soc. 130, 3758.CrossRefGoogle Scholar
  25. 25.
    H. He, G.-J. Cao, S.-T. Zheng, and G.-Y. Yang (2009). J. Am. Chem. Soc. 131, 15588.CrossRefGoogle Scholar
  26. 26.
    B. Li, D. Zhao, and G.-Y. Yang (2009). J. Clust. Sci. 20, 629.CrossRefGoogle Scholar
  27. 27.
    M. Höldscher, U. Englert, B. Zibrowlius, and W.-F. Höldscher (1994). Angew. Chem. Int. Ed. 33, 2491.Google Scholar
  28. 28.
    I. D. Brown and D. Altermatt (1985). Acta Crystallogr., B Struct. Sci. 41, 244.CrossRefGoogle Scholar
  29. 29.
    H.-B. Liu and Y.-G. Chen (2009). Synth. React. Inorg. Met. Org. Chem. 39, 236.Google Scholar
  30. 30.
    C.-D. Wu, C.-Z. Lu, H.-H. Zhuang, and J.-S. Huang (2003). Polyhedron 22, 3091.CrossRefGoogle Scholar
  31. 31.
    H. Liu, Y. Liu, H.-Y. Liu, C.-H. Shi, F.-H. Liu, and H.-L. Liu (2009). Inorg. Chem. Commun. 12, 1.CrossRefGoogle Scholar
  32. 32.
    H.-X. Yang, S.-P. Guo, J. Tao, J.-X. Lin, and R. Cao (2009). Cryst. Growth Des. 9, 4735.CrossRefGoogle Scholar
  33. 33.
    S.-T. Zheng, Y.-M. Chen, J. Zhang, J.-Q. Xu, and G.-Y. Yang (2006). Eur. J. Inorg. Chem. 397.Google Scholar
  34. 34.
    J. Madara’sz (2009). J. Therm. Anal. Calorim. 97, 111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations