Advertisement

Journal of Cluster Science

, Volume 21, Issue 2, pp 187–195 | Cite as

Lanthanide-Organic Frameworks Based on {Ln43-OH)42-OH)2} Cluster Units

  • Wei-Hui Fang
  • Zhi-Long Wang
  • Guo-Yu Yang
Original Paper

Abstract

Three novel lanthanide-organic frameworks: [Ln2(pyba)33-OH)22-OH)(H2O)] n (Ln = Er (1), Y (2), Dy (3) Hpyba = 4-pyridin-4-yl-benzoic acid) have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Structure analysis shows that each {Ln43-OH)42-OH)2} cluster units interconnect to form 1-D chains, which are further linked by π–π interactions to make a 3-D supramolecular network structure. Furthermore, the IR, PXRD and TGA of compounds 13 were also studied.

Graphical Abstract

Three novel lanthanide-organic frameworks: [Ln2(pyba)33-OH)22-OH)(H2O)] n (Ln = Er (1), Y (2), Dy (3), Hpyba = 4-pyridin-4-yl-benzoic acid) have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray structure analysis shows that each {Ln43-OH)42-OH)2} cluster units interconnect to form 1-D chains, which are further linked by π–π interactions to make a 3-D supramolecular network.

Keywords

Hydrothermal synthesis Lanthanide-organic frameworks 1-D chain 

Notes

Acknowledgements

The authors are thankful for the financial supports from the National Natural Science Fund for Distinguished Young Scholars of China (no. 20725101), the NNSF of China (no. 50872133), the 973 Program (no. 2006CB932904), the NSF of Fujian Province (nos. E0510030 and 2008F3120) and the Knowledge Innovation Program from CAS (no. KJCX2.YW.H01).

References

  1. 1.
    D. Gatteschi, L. Pardi, and A. Müller (1991). Nature 354, 463.CrossRefGoogle Scholar
  2. 2.
    S. Kitagawa, R. Kitaura, and S. Noro (2004). Angew. Chem. Int. Ed. 43, 2334.CrossRefGoogle Scholar
  3. 3.
    W.-H. Zhu, Z. M. Wang, and S. Gao (2007). Inorg. Chem. 46, 1337.CrossRefGoogle Scholar
  4. 4.
    G. X. Liu, K. Zhu, and H. Chen (2008). CrystEngCommun. 10, 1527.CrossRefGoogle Scholar
  5. 5.
    M. J. Zaworotko (1994). Chem. Soc. Rev. 23, 283.CrossRefGoogle Scholar
  6. 6.
    M. Fujita, Y. J. Kwon, and S. Washizu (1994). J. Am. Chem. Soc. 116, 1151.CrossRefGoogle Scholar
  7. 7.
    S. R. Batten and R. Robson (1998). Angew. Chem. Int. Ed. 37, 1460.CrossRefGoogle Scholar
  8. 8.
    T. M. Reineke, M. O’Keeffe, and O. M. Yaghi (1999). Angew. Chem. Int. Ed. 38, 2590.CrossRefGoogle Scholar
  9. 9.
    D. L. Long, A. J. Blake, and N. R. Champness (2001). Angew. Chem. Int. Ed. 40, 2443.CrossRefGoogle Scholar
  10. 10.
    L. Pan, N. Zheng, and Y. J. Li (2001). Inorg. Chem. 40, 828.CrossRefGoogle Scholar
  11. 11.
    L. Pan, E. B. Woodlock, and C. Zheng (2000). Inorg. Chem. 39, 4174.CrossRefGoogle Scholar
  12. 12.
    T. M. Reineke, M. Eddaoudi, and O. M. Yaghi (1999). J. Am. Chem. Soc. 121, 1651.CrossRefGoogle Scholar
  13. 13.
    T. Devic, C. Serre, and J. Marrot (2005). J. Am. Chem. Soc. 127, 12788.CrossRefGoogle Scholar
  14. 14.
    L. Pan, K. M. Adams, and K. Kaneko (2003). J. Am. Chem. Soc. 125, 3062.CrossRefGoogle Scholar
  15. 15.
    X. Zheng, C. Sun, and S. Gao (2004). Eur. J. Inorg. Chem. 3262.Google Scholar
  16. 16.
    Y. Q. Sun, J. Zhang, and G. Y. Yang (2005). Angew. Chem. Int. Ed. 44, 2.Google Scholar
  17. 17.
    N. Rosi, M. O’Keeffe, and O. M. Yaghi (2005). J. Am. Chem. Soc. 127, 1504.CrossRefGoogle Scholar
  18. 18.
    G. Zhang, G. Yang, and J. S. Ma (2006). Cryst. Growth Des. 6, 933.CrossRefGoogle Scholar
  19. 19.
    Y. G. Huang, F. L. Jiang, and M. C. Hong (2008). Cryst. Growth Des. 8, 166.CrossRefGoogle Scholar
  20. 20.
    Z. Chen, B. Zhao, and P. Cheng (2008). Cryst. Growth Des. 8, 2291.CrossRefGoogle Scholar
  21. 21.
    J. W. Cheng, J. Zhang, and G. Y. Yang (2006). Angew. Chem. Int. Ed. 45, 73.CrossRefGoogle Scholar
  22. 22.
    J. W. Cheng, S. T. Zheng, and G. Y. Yang (2008). Chem. Eur. J. 14, 88.CrossRefGoogle Scholar
  23. 23.
    M. B. Zhang, J. Zhang, and G. Y. Yang (2005). Angew. Chem. Int. Ed. 44, 1385.CrossRefGoogle Scholar
  24. 24.
    J. W. Cheng, J. Zhang, and G. Y. Yang (2007). Inorg. Chem. 46, 10261.CrossRefGoogle Scholar
  25. 25.
    J. W. Cheng, S. T. Zheng, and G. Y. Yang (2007). Inorg. Chem. 46, 10534.CrossRefGoogle Scholar
  26. 26.
    J. W. Cheng, S. T. Zheng, and G. Y. Yang (2008). Inorg. Chem. 47, 4930.CrossRefGoogle Scholar
  27. 27.
    X. L. Jia, J. Zhou, and G. Y. Yang (2009). J. Clust. Sci. 20, 555.CrossRefGoogle Scholar
  28. 28.
    Z. L. Wang, W. H. Fang, and G. Y. Yang (2009). J. Clust. Sci. 20, 725.CrossRefGoogle Scholar
  29. 29.
    G. M. Sheldrick, SHELXS97, Program for Siemens Area Detector Absorption Corrections (University of Göttingen. Germany, 1997).Google Scholar
  30. 30.
    G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Solution (University of Göttingen. Germany, 1997).Google Scholar
  31. 31.
    G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Germany, 1997).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations