Journal of Cluster Science

, Volume 21, Issue 3, pp 313–324 | Cite as

Synthesis and Anticancer Activity of Long-Chain Isonicotinic Ester Ligand-Containing Arene Ruthenium Complexes and Nanoparticles

  • Georg Süss-Fink
  • Farooq-Ahmad Khan
  • Lucienne Juillerat-Jeanneret
  • Paul J. Dyson
  • Anna K. Renfrew
Original Paper


Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4–4-COO–C6H4–4-O–(CH2)9–CH3 or L2 = NC5H4–4-COO–(CH2)10–O–C6H4–4-COO–C6H4–4-C6H4–4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR).


Ruthenium nanoparticles Anticancer drugs Bioorganometallic chemistry Isonicotinic ester ligands Arene ruthenium complexes 



Financial support of this work from the Fonds National Suisse de la Recherche Scientifique (Grant no. 200021-115821) is gratefully acknowledged. We also thank the Johnson Matthey Research Centre for a generous loan of ruthenium(III) chloride hydrate.


  1. 1.
    G. Süss-Fink (2010). Dalton Trans. 39, 1673.CrossRefGoogle Scholar
  2. 2.
    P. J. Dyson (2007). Chimia. 61, 698.CrossRefGoogle Scholar
  3. 3.
    S. J. Dougan and P. J. Sadler (2007). Chimia. 61, 704.CrossRefGoogle Scholar
  4. 4.
    L. D. Dale, J. H. Tocher, T. M. Dyson, D. I. Edwards, and D. A. Tocher (1992). Anti-Cancer Drug Design. 7, 3.Google Scholar
  5. 5.
    C. S. Allardyce, P. J. Dyson, D. J. Ellis, and S. L. Heath (2001). Chem. Commun. 1396.Google Scholar
  6. 6.
    R. E. Morris, R. E. Aird, P. d. S. Murdoch, H. Chen, J. Cummings, N. D. Hughes, S. Pearsons, A. Parkin, G. Boyd, D. I. Jodrell, and P. J. Sadler (2001). J. Med. Chem. 44, 3616.CrossRefGoogle Scholar
  7. 7.
    G. V. Tsarichenko, V. I. Bobrov, and M. V. Smarkov (1977). Pharm. Chem. J. 11, 481.CrossRefGoogle Scholar
  8. 8.
    J. Suarez, K. Ranguelova, and A. A. Jarzecki (2009). J. Biol. Chem. 284, 7017.CrossRefGoogle Scholar
  9. 9.
    J. G. Małecki, R. Kruszynski, M. Jaworska, P. Lodowski, and Z. Mazurak (2008). J. Organomet. Chem. 693, 1096.CrossRefGoogle Scholar
  10. 10.
    T. Arthur and T. A. Stephenson (1981). J. Organomet. Chem. 208, 369.CrossRefGoogle Scholar
  11. 11.
    M. A. Bennett, G. B. Robertson, and A. K. Smith (1972). J. Organomet. Chem. 43, C41.CrossRefGoogle Scholar
  12. 12.
    M. A. Bennett, T. W. Matheson, G. B. Robertson, A. K. Smith, and P. A. Tucker (1980). Inorg. Chem. 10, 1014.CrossRefGoogle Scholar
  13. 13.
    M. S. Röthlisberger, W. Hummel, P.-A. Pittet, H.-B. Bürgi, A. Ludi, and A. E. Merbach (1988). Inorg. Chem. 27, 1358.CrossRefGoogle Scholar
  14. 14.
    W. Weber and P. C. Ford (1986). Inorg. Chem. 25, 1088.CrossRefGoogle Scholar
  15. 15.
    S. Ogo, T. Abura, and Y. Watanabe (2002). Organometallics. 21, 2964.CrossRefGoogle Scholar
  16. 16.
    M. Marcos, M. B. Ros, J. L. Serrano, M. A. Esteruelas, E. Sola, L. A. Oro, and J. Barberà (1990). Chem. Mater. 2, 748.CrossRefGoogle Scholar
  17. 17.
    B. Dardel, D. Guillon, B. Heinrich, and R. Deschenaux (2001). J. Mater. Chem. 11, 2814.CrossRefGoogle Scholar
  18. 18.
    M. D. Abramoff, P. J. Magelhaes, and S. J. Ram (2004). Biophotonics Int. 11, 36.Google Scholar
  19. 19.
    Y. Malam, M. Loizidou, and A. M. Seifalian (2009). Trends Pharm. Sci. 30, 592.CrossRefGoogle Scholar
  20. 20.
    P. P. Jumade, A. M. Gupta, P. W. Dhore, P. S. Wake, V. V. Pande, and A. Deshmukh (2009). J. Chem. Pharm. Sci. 2, 158.Google Scholar
  21. 21.
    M. E. Gindy and R. K. Prud’homme (2009). Exp. Opin. Drug Deliv. 6, 865.CrossRefGoogle Scholar
  22. 22.
    W. Lin, T. Hyeon, G. M. Lanza, M. Zhang, and T. J. Meade (2009). MRS Bull. 34, 441.Google Scholar
  23. 23.
    D. F. Baban and L. W. Seymour (1998). Adv. Drug Deliv. Rev. 34, 109.CrossRefGoogle Scholar
  24. 24.
    M. Vaccaro, R. Del Litto, G. Mangiapia, A. M. Carnerup, G. D’Errico, F. Ruffoa, and L. Paduano (2009). Chem. Commun. 1404.Google Scholar
  25. 25.
    W. H. Ang and P. J. Dyson (2006). Eur. J. Inorg. Chem. 4003.Google Scholar
  26. 26.
    F. Schmitt, P. Govindaswamy, G. Süss-Fink, W. H. Ang, P. J. Dyson, L. Juillerat-Jeanneret, and B. Therrien (2008). J. Med. Chem. 51, 1811.CrossRefGoogle Scholar
  27. 27.
    P. Govender, N. C. Antonels, J. Mattsson, A. K. Renfrew, P. J. Dyson, J. R. Moss, B. Therrien, and G. S. Smith (2009). J. Organomet. Chem. 694, 3470.CrossRefGoogle Scholar
  28. 28.
    J. Mattsson, P. Govindaswamy, A. K. Renfrew, P. J. Dyson, P. Štěpnička, G. Süss-Fink, and Bruno. Therrien (2009). Organometallics. 28, 4350.CrossRefGoogle Scholar
  29. 29.
    M. G. Mendoza-Ferri, C. G. Hartinger, A. A. Nazarov, R. E. Eichinger, M. A. Jakupec, K. Severin, and B. K. Keppler (2009). Organometallics. 28, 6260.CrossRefGoogle Scholar
  30. 30.
    B. Therrien, W. H. Ang, F. Chérioux, L. Vieille-Petit, L. Juillerat-Jeanneret, G. Süss-Fink, and P. J. Dyson (2007). J. Clust. Sci. 18, 741.CrossRefGoogle Scholar
  31. 31.
    M. Auzias, B. Therrien, G. Süss-Fink, P. Štěpnička, W. H. Ang, and P. J. Dyson (2008). Inorg. Chem. 47, 578.CrossRefGoogle Scholar
  32. 32.
    C. A. Vock, C. Scolaro, A. D. Phillips, R. Scopelliti, G. Sava, and P. J. Dyson (2006). J. Med. Chem. 49, 5552.CrossRefGoogle Scholar
  33. 33.
    K. Furuta, H. Shirahashi, H. Yamashita, K. Ashibe, and E. Kuwano (2006). Biosci. Biotechnol. Biochem. 70, 746.CrossRefGoogle Scholar
  34. 34.
    W. G. Friebe, W. Kampe, M. Linssen, and O. H. Wilhelms (1992). Ger. Offen. DE 4038335 A1 19920604.Google Scholar
  35. 35.
    D. S. Goldfarb (2009) U.S. Patent Appl. Publ. US 2009163545 A1 20090625.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Georg Süss-Fink
    • 1
  • Farooq-Ahmad Khan
    • 1
  • Lucienne Juillerat-Jeanneret
    • 2
  • Paul J. Dyson
    • 3
  • Anna K. Renfrew
    • 3
  1. 1.Institut de ChimieUniversité de NeuchâtelNeuchâtelSwitzerland
  2. 2.University Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
  3. 3.Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations