Journal of Cluster Science

, Volume 20, Issue 3, pp 525–534 | Cite as

Chemical Bonding and Electronic Structure of 4d-Metal Monosulfides

Original Paper


Bond distances, vibrational frequencies, dissociation energies, electron affinities, ionization potentials and dipole moments of the title molecules in neutral and charged ions were studied by use of density functional method. Ground states for each molecule were assigned. The calculated bond distance decreases with the increasing of atomic number of 4d metals, reaches minimum at RhS, then increases. For cationic molecules, the calculated bond distance decreases to the minimum at MoS+, then increases. The calculated vibrational frequency decreases from YS(YS+) to PdS(PdS+) for both neutral and cationic molecules. The bond ionic character decreases from YS(YS+) to PdS(PdS+) for neutral and cationic molecules. The bonding patterns are discussed and compared with the available studies.


4d-Metal monosulfides Density functional theory Spectroscopic constant Electron affinity Ionization potential 



JPW and XBS thank the Ph.D. Foundation of Qingdao Agricultural University.

Supplementary material

10876_2009_252_MOESM1_ESM.doc (144 kb)
Supplementary material 1 (DOC 144 kb)


  1. 1.
    E. I. Stiefel and K. Matsumoto (eds.), Transition Metal Sulfur Chemistry; ACS Symposium Series 653 (American Chemistry Society, Washington, DC, 1996).Google Scholar
  2. 2.
    M. Hua, C. I. Garcia, and A. DeArdo (1997). J. Metall. Mater. Trans. A 28A, 1769.CrossRefGoogle Scholar
  3. 3.
    T. C. Steimle and W. Virgo (2003). J. Mol. Spectrosc. 221, 57.CrossRefGoogle Scholar
  4. 4.
    P. Cheng, G. K. Koyanagi, and D. K. Bohme (2006). J. Phys. Chem. A 110, 2718.CrossRefGoogle Scholar
  5. 5.
    I. Kretzschmar, D. Schroder, H. Schwarz, and P. B. Armentrout (2006). Int. J. Mass Spectrom. 249–250, 263.CrossRefGoogle Scholar
  6. 6.
    S. A. Beaton and M. C. L. Gerry (1999). J. Chem. Phys. 110, 10715.CrossRefGoogle Scholar
  7. 7.
    R. R. Bousquet, K. C. Namiki, and T. C. Steimle (2000). J. Chem. Phys. 113, 1566.CrossRefGoogle Scholar
  8. 8.
    R. R. Reddy, Y. N. Ahammed, B. S. Devi, K. R. Gopal, P. A. Azeem, and T. V. R. Rao (2002). Astrophys. Space Sci. 281, 729.CrossRefGoogle Scholar
  9. 9.
    B. Liang and L. Andrews (2002). J. Phys. Chem. A 106, 6295.CrossRefGoogle Scholar
  10. 10.
    B. Liang and L. Andrews (2002). J. Phys. Chem. A 106, 3738.CrossRefGoogle Scholar
  11. 11.
    O. Launila (2005). J. Mol. Spectrosc. 229, 31.CrossRefGoogle Scholar
  12. 12.
    R. Oviedo-Roa, J. M. Martinez-Magadan, and F. Illas (2006). J. Phys. Chem. B 110, 7951.CrossRefGoogle Scholar
  13. 13.
    B. Liang and L. Andrews (2002). J. Phys. Chem. A 106, 6945.CrossRefGoogle Scholar
  14. 14.
    R. Li, W. J. Balfour, W. S. Hopkins, and A. G. Adam (2005). J. Mol. Spectrosc. 234, 211.CrossRefGoogle Scholar
  15. 15.
    P. B. Armentrout (2003). Int. J. Mass Spectrom. 227, 289.CrossRefGoogle Scholar
  16. 16.
    K. A. Peterson, B. C. Shepler, and J. M. Singleton (2007). Mol. Phys. 105, 445.CrossRefGoogle Scholar
  17. 17.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, J. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.02 (Gaussian, Inc., Pittsburgh PA, 2003).Google Scholar
  18. 18.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  19. 19.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  20. 20.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.CrossRefGoogle Scholar
  21. 21.
    A. M. James and B. Simard (1993). J. Chem. Phys. 98, 4422.CrossRefGoogle Scholar
  22. 22.
    S. R. Langhoff and C. W. Bauschlicher Jr. (1988). J. Chem. Phys. 89, 2160.CrossRefGoogle Scholar
  23. 23.
    J. Jonsson, B. Lindgren, and A. G. Taklif (1991). Astron. Astrophys. 246, L67.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemical and Pharmaceutical SciencesQingdao Agricultural UniversityQingdaoPeople’s Republic of China
  2. 2.State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations