Advertisement

Journal of Cluster Science

, Volume 20, Issue 3, pp 481–488 | Cite as

Hydrothermal Synthesis and Structure of A Novel Organic–Inorganic Hybrid Polyoxotungstate: H5[Cu(en)2H2O]{Cu(en)2[P2W19O69(H2O)]} · 2.5H2en · 8H2O

  • Yong-Chao Liu
  • Shou-Tian Zheng
  • Guo-Yu Yang
Original Paper

Abstract

A novel polyoxotungstate H5[Cu(en)2H2O]{Cu(en)2[P2W19O69(H2O)]} · 2.5H2en · 8H2O (1) has been synthesized under hydrothermal conditions and characterized by IR spectroscopy, elemental analysis, and single crystal X-ray structural analysis. Crystal data for 1: Triclinic, P-1, a = 12.673(6) Å, b = 20.147(10) Å, c = 20.514(11) Å, α = 110.432(7)°, β = 90.171(5)°, γ = 97.502(6)°, V = 4859(4) Å3, Z = 2. Compound 1 exhibits a 1D linear structure, in which the [Cu(en)2]2+ ions act as the linkages of {P 2 W 19 } lacunary units.

Graphical Abstract

A novel polyoxotungstate H5[Cu(en)2H2O]{Cu(en)2[P2W19O69(H2O)]} · 2.5H2en · 8H2O has been made under hydrothermal conditions. Compound 1 exhibits a 1D linear structure based on the {P 2 W 19 } lacunary units linked by the [Cu(en)2]2+ bridging groups.

Keywords

Hydrothermal synthesis Crystal structure Organic–inorganic hybrid Lacunary polyoxometalates Copper 

Notes

Acknowledgments

The authors are thankful for the financial supports from the National Natural Science Fund for Distinguished Young Scholars of China (no. 20725101), the NNSF of China (nos. 50872133 and 20821061), the 973 Program (no. 2006CB932904), the NSF of Fujian Province (no. E0510030), and the Knowledge Innovation Program from CAS (no. KJCX2.YW.H01).

References

  1. 1.
    M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).Google Scholar
  2. 2.
    Special issue on Polyoxometalates (Guest Ed.: C. L. Hill) (1998). Chem. Rev. 98, 1.Google Scholar
  3. 3.
    M. T. Pope and A. Müller (eds.) Polyoxometalate Chemistry From Topology via Self-Assembly to Applications (Kluwer Academic Publishers, Dordrecht, 2001).Google Scholar
  4. 4.
    S.-T. Zheng, D.-Q. Yuan, H.-P. Jia, J. Zhang, and G.-Y. Yang (2007). Chem. Commun. 1858.Google Scholar
  5. 5.
    S.-T. Zheng, D.-Q. Yuan, J. Zhang, and G.-Y. Yang (2007). Inorg. Chem. 46, 4569.CrossRefGoogle Scholar
  6. 6.
    J.-W. Zhao, J. Zhang, S.-T. Zheng, and G.-Y. Yang (2007). Chem. Eur. J. 13, 10030.CrossRefGoogle Scholar
  7. 7.
    J.-W. Zhao, J. Zhang, S.-T. Zheng, and G.-Y. Yang (2007). Inorg. Chem. 46, 10944.CrossRefGoogle Scholar
  8. 8.
    J.-W. Zhao, J. Zhang, S.-T. Zheng, and G.-Y. Yang (2008). Chem. Commun. 570.Google Scholar
  9. 9.
    S.-T. Zheng, J. Zhang, and G.-Y. Yang (2008). Angew. Chem. Int. Ed. 47, 3909.CrossRefGoogle Scholar
  10. 10.
    C. Pichon, A. Dolbecq, P. Mialane, J. Marrot, E. Rivière, and F. Sécheressea (2008). Dalton Trans. 71.Google Scholar
  11. 11.
    C. Pichon, A. Dolbecq, P. Mialane, J. Marrot, E. Rivière, M. Goral, M. Zynek, T. McCormac, S. A. Borshch, E. Zueva, and F. Sécheressea (2008). Chem. Eur. J. 14, 3189.CrossRefGoogle Scholar
  12. 12.
    A. Dolbecq, J. D. Compain, P. Mialane, J. Marrot, and E. Rivière (2008). Inorg. Chem. 47, 3371.CrossRefGoogle Scholar
  13. 13.
    Z. Zhang, J. Liu, E. Wang, C. Qin, Y. Li, Y. Qi, and X. Wang (2008). Dalton Trans., 463.Google Scholar
  14. 14.
    R. Contant (1990). Inorg. Synth. 27, 108.Google Scholar
  15. 15.
    G. M. Sheldrick, SADABS Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, Germany, 1997).Google Scholar
  16. 16.
    G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, Germany, 1997).Google Scholar
  17. 17.
    G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 1997).Google Scholar
  18. 18.
    C. M. Tourné and G. F. Tourné (1988). J. Chem. Soc. Dalton Trans., 2411.Google Scholar
  19. 19.
    T. M. Anderson, R. Cao, E. Slonkina, B. Hedman, K. O. Hodgson, K. I. Hardcastle, W. A. Neiwert, S. Wu, M. L. Kirk, S. Knottenbelt, E. C. Depperman, B. Keita, L. Nadjo, D. G. Musaev, K. Morokuma, and C. L. Hill (2005). J. Am. Chem. Soc. 127, 11948.CrossRefGoogle Scholar
  20. 20.
    B. Godin, J. Vaissermann, P. Herson, L. Ruhlmann, M. Verdaguer, and P. Gouzerh (2005). Chem. Commun. 5624.Google Scholar
  21. 21.
    R. Contant, M. Abbessi, R. Thouvenot, and G. Hervé (2004). Inorg. Chem. 43, 3597.CrossRefGoogle Scholar
  22. 22.
    A. Ostuni and M. T. Pope (2000). C. R. Chim. 3, 199.Google Scholar
  23. 23.
    U. Kortz (2003). J. Clust. Sci. 14, 205.CrossRefGoogle Scholar
  24. 24.
    R. Contant (1990). Inorg. Synth. 27, 104.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations