Skip to main content
Log in

Electrospray Ionization Based Methods for the Generation of Polynuclear Oxo- and Hydroxo Group 6 Anions in the Gas-Phase

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Electrospray ionization (ESI) of the Lindqvist (n-Bu4N)2[M6O19] (M = Mo, W) polyoxometalates provides a straightforward entry for the generation of an assortment of oxo- and hydroxo anions in the gas-phase. In particular, the series of oxo dianions of general formula [(MO3) n O]2− (n = 2–6; M = Mo, W), monoanions, namely [(MO3) n O] (n = 1, 2) and [(MO3) n ] (n = 1, 2), and the hydroxo [(MO3) n (OH)] (n = 1–6) species can be readily generated in the gas-phase upon varying the solvent composition as well as the ionisation conditions (typically the Uc cone voltage). Complementary tandem mass experiments (collision induced dissociation and ion–molecule reactions) are also used aimed to investigate the consecutive dissociation of these species and their intrinsic gas-phase reactivity towards methanol. Special emphasis is paid to some of the key factors of these group 6 anions related to the gas-phase activation of methanol, such as molecular composition, open vs closed shell electronic nature and cluster size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. P. V. Soares and M. F. Portela (2005). Catal. Rev.-Sci. Eng. 47, 125.

    Article  CAS  Google Scholar 

  2. Y. Ono (2003). Catal. Today 81, 3.

    Article  CAS  Google Scholar 

  3. G. Fu, X. Xu, X. Lu, and H. L. Wan (2005). J. Am. Chem. Soc. 127, 3989.

    Article  CAS  Google Scholar 

  4. J. M. Mayer (1998). Acc. Chem. Res. 31, 441.

    Article  CAS  Google Scholar 

  5. K. M. Ervin (2001). Int. Rev. Phys. Chem. 20, 127.

    Article  CAS  Google Scholar 

  6. S. Gronert (2001). Chem. Rev. 101, 329.

    Article  CAS  Google Scholar 

  7. K. A. Zemski, D. R. Justes, and A. W. Castleman Jr. (2002). J. Phys. Chem. B 106, 6136.

    Article  CAS  Google Scholar 

  8. P. B. Armentrout (2003). Eur. J. Mass Spectrom. 9, 531.

    Article  CAS  Google Scholar 

  9. R. A. J. O’Hair and G. N. Khairallah (2004). J. Clust. Sci. 15, 331.

    Article  Google Scholar 

  10. R. A. J. O’Hair (2006). Chem. Commun. 1469.

  11. D. K. Bohme and H. Schwarz (2005). Angew. Chem. Int. Ed. 44, 2336.

    Article  Google Scholar 

  12. T. M. Bernhardt (2005). Int. J. Mass Spectrom. 243, 1.

    Article  CAS  Google Scholar 

  13. C. J. Cassady, D. A. Weil, and S. W. McElvany (1992). J. Chem. Phys. 96, 691.

    Article  CAS  Google Scholar 

  14. S. Maleknia, J. Brodbelt, and K. Pope (1991). J. Am. Soc. Mass Spectrom. 2, 212.

    Article  CAS  Google Scholar 

  15. A. Hachimi, E. Poitevin, G. Krier, J. F. Muller, and M. Ruiz-Lopez (1995). Int. J. Mass Spectrom. Ion Process. 144, 23.

    Article  CAS  Google Scholar 

  16. K. Poels, L. Van Vaeck, and R. Gijbels (1998). Anal. Chem. 70, 504.

    Article  CAS  Google Scholar 

  17. L. Van Vaeck, A. Adriaens, and F. Adams (1998). Spectrochim. Acta B53, 367.

    Google Scholar 

  18. F. Aubriet and J.-F. Muller (2002). J. Phys. Chem. A 106, 6053.

    Article  CAS  Google Scholar 

  19. D. M. David Jeba Singh and T. Pradeep (2004). Chem. Phys. Lett. 395, 351.

    Article  Google Scholar 

  20. Q. Sun, B. K. Rao, P. Jena, D. Stolcic, Y. D. Kim, G. Gantefor, and A. W. Castleman Jr (2004). J. Chem. Phys. 121, 9417.

    Article  CAS  Google Scholar 

  21. H. J. Zhai, X. Huang, L. F. Cui, X. Li, J. Li, and L. S. Wang (2005). J. Phys. Chem. A 109, 6019.

    Article  CAS  Google Scholar 

  22. H. J. Zhai, X. Huang, T. Waters, X. B. Wang, R. A. J. O’Hair, A. G. Wedd, and L. S. Wang (2005). J. Phys. Chem. A 109, 10512.

    Article  CAS  Google Scholar 

  23. S. Li and D. A. Dixon (2006). J. Phys. Chem. A 110, 6231.

    Article  CAS  Google Scholar 

  24. X. Huang, H. J. Zhai, J. Li, and L. S. Wang (2006). J. Phys. Chem. A 110, 85.

    Article  CAS  Google Scholar 

  25. X. Huang, H. J. Zhai, T. Waters, J. Li, and L. S. Wang (2006). Angew. Chem. Int. Ed. 45, 657.

    Article  CAS  Google Scholar 

  26. S. Li and D. A. Dixon (2007). J. Phys. Chem. A 111, 11093.

    Article  CAS  Google Scholar 

  27. T. C. Lau, J. Wang, R. Guevremont, and K. W. M. Siu (1995). J. Chem. Soc., Chem. Commun. 877.

  28. D. K. Walanda, R. C. Burns, G. A. Lawrance, E. I. Nagy-Felsobuki (1999). J. Chem. Soc., Dalton Trans. 311.

  29. C. S. Truebenbach, M. Houalla, and D. M. Hercules (2000). J. Mass Spectrom. 35, 1121.

    Article  CAS  Google Scholar 

  30. M. J. Deery, O. W. Howarth, and K. R. Jennings (1997). J. Chem. Soc., Dalton Trans. 4783.

  31. M. Bonchio, O. Bortolini, V. Conte, and A. Sartorel (2003). Eur. J. Inorg. Chem. 699.

  32. D. L. Long, C. Streb, Y. F. Song, S. Mitchell, and L. Cronin (2008). J. Am. Chem. Soc. 130, 1830.

    Article  CAS  Google Scholar 

  33. T. Waters, R. A. J. O’Hair, and A. G. Wedd (2003). J. Am. Chem. Soc. 125, 3384.

    Article  CAS  Google Scholar 

  34. T. Waters, R. A. J. O’Hair, and A. G. Wedd (2005). Inorg. Chem. 44, 3356.

    Article  CAS  Google Scholar 

  35. D. Schröder, M. Engeser, M. Brönstrup, C. Daniel, J. Spandl, and H. Hartl (2003). Int. J. Mass Spectrom. 228, 743.

    Article  Google Scholar 

  36. S. Feyel, D. Schröder, and H. Schwarz (2006). J. Phys. Chem. A 110, 2647.

    Article  CAS  Google Scholar 

  37. S. Feyel, L. Scharfenberg, C. Daniel, H. Hartl, D. Schröder, and H. Schwarz (2007). J. Phys. Chem. A 111, 3278.

    Article  CAS  Google Scholar 

  38. S. Feyel, D. Schröder, X. Rozanska, J. Sauer, and H. Schwarz (2006). Angew. Chem. Int. Ed. 45, 4677.

    Article  CAS  Google Scholar 

  39. S. Feyel, J. Döbler, D. Schröder, J. Sauer, and H. Schwarz (2006). Angew. Chem. Int. Ed. 45, 4681.

    Article  CAS  Google Scholar 

  40. V. W. Day and W. G. Klemperer (1985). Science 228, 533.

    Article  CAS  Google Scholar 

  41. W. G. Klemperer and C. G. Wall (1998). Chem. Rev. 98, 297.

    Article  CAS  Google Scholar 

  42. M. Che, M. Fournier, and J. P. Launay (1979). J. Chem. Phys. 71, 1954.

    Article  CAS  Google Scholar 

  43. C. Sanchez, J. Livage, J. P. Launay, and M. Fournier (1983). J. Am. Chem. Soc. 105, 6817.

    Article  CAS  Google Scholar 

  44. X. Yang, T. Waters, X. B. Wang, R. A. J. O’Hair, A. G. Wedd, J. Li, D. A. Dixon, and L. S. Wang (2004). J. Phys. Chem. A 108, 10089.

    Article  CAS  Google Scholar 

  45. H. J. Zhai, B. Kiran, L. F. Cui, X. Li, D. A. Dixon, and L. S. Wang (2004). J. Am. Chem. Soc. 126, 16134.

    Article  CAS  Google Scholar 

  46. T. Waters, X.-B. Wang, S. Li, B. Kiran, D. A. Dixon, and L. S. Wang (2005). J. Phys. Chem. A 109, 11771.

    Article  CAS  Google Scholar 

  47. C. J. Taylor, B. Wu, and C. E. H. Dessent (2008). Int. J. Mass Spectrom. 276, 31.

    Article  CAS  Google Scholar 

  48. S. Feyel, T. Waters, R. A. J. O’Hair, and A. G. Wedd (2004). Dalton Trans. 4010.

  49. E. F. Fialko, A. V. Kikhtenko, V. B. Goncharov, and K. I. Zamaraev (1997). J. Phys. Chem. B 101, 5772–5773.

    Article  CAS  Google Scholar 

  50. V. B. Goncharov (2003). Kinet. Catal. 44, 548.

    Article  Google Scholar 

  51. S. Feyel, J. Döbler, R. Höckendorf, M. K. Beyer, J. Sauer, and H. Schwarz (2008). Angew. Chem. Int. Ed. 47, 1946.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Educación y Ciencia (MEC) and EU FEDER (Project CTQ2005-09270-C02-01), and Fundació Bancaixa-Universitat Jaume I (Grant P1.1B2007-12). The authors also are grateful to the Serveis Centrals d’Instrumentació Científica (SCIC) of the Universitat Jaume I for providing us with spectrometric facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosa Llusar or Cristian Vicent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llusar, R., Sorribes, I. & Vicent, C. Electrospray Ionization Based Methods for the Generation of Polynuclear Oxo- and Hydroxo Group 6 Anions in the Gas-Phase. J Clust Sci 20, 177–192 (2009). https://doi.org/10.1007/s10876-008-0228-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0228-z

Keywords

Navigation