Advertisement

Journal of Cluster Science

, Volume 20, Issue 1, pp 77–81 | Cite as

Two Coordination Modes of Bidentate Aminopyrazine Ligands in Cubane-type Cluster Complex Re4Te4Cl8(C4N3H4)4 · 2DMF

  • Olga A. Efremova
  • Yuri V. Mironov
  • Hans-Jürgen Pietzsch
  • Holger Stephan
  • Christiane Perrin
  • Vladimir E. Fedorov
Original Paper

Abstract

A new cubane-type cluster complex Re4Te4Cl4(C4H4N3)4 · 2DMF has been synthesized by reaction of Re4Te4Cl8(TeCl2)4 with 2-aminopyrazine C4H5N3 in DMF. The crystal structure of compound has been solved by X-ray single crystal diffraction method. Crystal data for Re4Te4Cl4(C4N3H4)4 · 2DMF: a = 22.8718(16) Å, = 8.5936(7) Å, c = 20.5720(17) Å, β o 106.493(2), V = 3877.1(5) Å3, R 1 = 0.0466, R w(F 2) = 0.1191. In the complex bidentate aminopyrazine ligands are coordinated in two different types, namely, two of four aminopyrazine ligands bind to a single rhenium atom, and each of two other ligands is coordinated as bridge between two rhenium atoms.

Graphical Abstract

A new cubane-type cluster complex Re4Te4Cl4(C4H4N3)4  · 2DMF with two coordination modes of bidentate aminopyrazine ligands has been synthesized and structurally characterized.

Keywords

Cubane Re4 cluster 2-Aminopyrazine Synthesis Crystal structure 

Notes

Acknowledgments

The research was supported by the International Bureau of the Federal Ministry of Education and Research (Grant RUS 01/241, RUS 07/005) and by PECO-NEI (RFR Contract n° 370 from the French “Ministère de l’Education Nationale, Enseignement Supérieur et Recherche”), and ECO-NET (contract n°18845ZH from the French “Ministère des Affaires Etrangères”).

References

  1. 1.
    J. M. Berg and R. H. Holm, in T. G. Spiro (ed.), Iron-Sulfur Proteins Chapter 1 (Wiley-Interscience, New York, 1982).Google Scholar
  2. 2.
    C. Perrin, R. Chevrel, and M. Sergent (1976). J. Solid State Chem. 19, 305.CrossRefGoogle Scholar
  3. 3.
    S. Harris (1989). Polyhedron. 8, 2843.CrossRefGoogle Scholar
  4. 4.
    T. Shibahara (1993). Coord. Chem. Rev. 123, 73.CrossRefGoogle Scholar
  5. 5.
    Y. V. Mironov and V. E. Fedorov (2002). Russ. Chem. Bull. Int. Ed. 51, 569.CrossRefGoogle Scholar
  6. 6.
    I. V. Kalinina and V. P. Fedin (2003). Russ. J. Coord. Chem. 29, 597.CrossRefGoogle Scholar
  7. 7.
    Q. Liu, L. Huang, Y. Yang, and J. Lu (1987). Jiegou Huaxue. 6, 135.Google Scholar
  8. 8.
    L. Huang, Y. Yang, Q. Liu, and J. Lu (1986). Jiegou Huaxue. 5, 61.Google Scholar
  9. 9.
    T. C. W. Mak, K. S. Jasim, and C. Chieh (1984). Angew. Chem. Int. Ed. Engl. 23, 391.CrossRefGoogle Scholar
  10. 10.
    T. C. W. Mak, K. S. Jasim, and C. Chieh (1985). Inorg. Chem. 24, 1587.CrossRefGoogle Scholar
  11. 11.
    O. A. Efremova, Y. V. Mironov, and V. E. Fedorov (2006). Eur. J. Inorg. Chem. 2533.Google Scholar
  12. 12.
    Y. V. Mironov, T. E. Albrecht-Schmitt, and J. A. Ibers (1997). Inorg. Chem. 36, 944.CrossRefGoogle Scholar
  13. 13.
    APEX2, Version 1.08; SAINT, Version 7.03; Bruker Advanced X-ray Solutions (Bruker AXS Inc., Madison, WI, 2004).Google Scholar
  14. 14.
    SADABS, Version 2.11; Bruker Advanced X-ray Solutions (Bruker AXS Inc., Madison, WI, 2004).Google Scholar
  15. 15.
    SHELXTL, Version 6.12; Bruker Advanced X-ray Solutions (Bruker AXS Inc., Madison, WI, 2004).Google Scholar
  16. 16.
    Y. V. Mironov, T. E. Albrecht-Schmitt, D. M. Smith, and J. A. Ibers (2001). Z. Kristallogr.–New Cryst. Struct. 216, 517.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Olga A. Efremova
    • 1
  • Yuri V. Mironov
    • 1
  • Hans-Jürgen Pietzsch
    • 2
  • Holger Stephan
    • 2
  • Christiane Perrin
    • 3
  • Vladimir E. Fedorov
    • 1
  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Institut für RadiopharmazieForschungszentrum Dresden-RossendorfDresdenGermany
  3. 3.Université de Rennes 1, CNRS UMR 6226 Sciences Chimiques de RennesRennesFrance

Personalised recommendations