Journal of Cluster Science

, Volume 19, Issue 4, pp 659–666 | Cite as

A Novel Tantalum Cluster Chalcohalide Ta4S1.5Se7.5I8

  • Artem L. Gushchin
  • Maxim N. Sokolov
  • Pavel A. Abramov
  • Nina F. Zakharchuk
  • Vladimir P. Fedin
Brief Communication


Single crystals of Ta4S1.5Se7.5I8 are obtained by heating Ta, S, Se and I2 at 300 °C in 4.0:1.0:8.0:4.4 molar ratio. The structure was determined by X-ray analysis and consists of molecular clusters [Ta44-S)(μ2-QaxSeeq)4I8] (Q ≈ Se0.87S0.13). The tantalum atoms form a square with long Ta…Ta distances (3.26–3.32 Å), with four dichalcogenide ligands bridging the Ta–Ta edges and a sulfur atom capping the square. Each Ta atom has two terminal iodine atoms. Raman spectroscopy study shows the presence of the characteristic absorption band at 396 cm−1 which is due to the Ta4–μ4-S vibrations. Cyclic voltammetry shows that Ta4S1.5Se7.5I8 in solid state undergoes quasi-reversible one-electron oxidation which is metal-centered.


Tantalum Chalcogen Chalcohalide Cluster Crystal structure 



The authors thank Drs. Alexandr V. Virovets and Eugenia V. Peresypkina for carrying out X-ray diffraction experiment and Technical University of Denmark for an H.C. Ørsted Post-doctoral Fellowship (to ALG).


  1. 1.
    M. N. Sokolov, A. L. Gushchin, P. A. Abramov, A. V. Virovets, E. V. Peresypkina, S. G. Kozlova, B. A. Kolesov, C. Vicent, and V. P. Fedin (2005). Inorg. Chem.. 44, 8756.CrossRefGoogle Scholar
  2. 2.
    M. N. Sokolov, A. L. Gushchin, A. V. Virovets, E. V. Peresypkina, S. G. Kozlova, and V. P. Fedin (2004). Inorg. Chem.. 43, 7966.CrossRefGoogle Scholar
  3. 3.
    M. N. Sokolov, V. P. Fedin, and A. G. Sykes (2003). Compr. Coord. Chem. II. 4, 768.Google Scholar
  4. 4.
    V. E. Fedorov, Y. V. Mironov, N. G. Naumov, M. N. Sokolov, and V. P. Fedin (2007). Russ. Chem. Bull.. 76, 529.Google Scholar
  5. 5.
    S. V. Volkov, Z. A. Fokina, O. G. Yanko, V. I. Pekhnyo, and L. B. Kharkova (2005). Zh. Neorg. Khim.. 50, 1244.Google Scholar
  6. 6.
    F. Scholz and B. Meyer in A. J. Bard, and I. Rubenstein (eds.), Voltammetry of Solid Microparticles Immobilized on Electrode Surfaces, Electroanalytical Chemistry. A Series of Advances, vol. 20 (Dekker, New York Basel Hohg-Kong, 1998), pp. 1–86.Google Scholar
  7. 7.
    F. Scholz and B. Meyer (1994). Chem. Soc. Rev.. 23, 341.CrossRefGoogle Scholar
  8. 8.
    N. Zakharchuk, B. Meyer, H. Hennig, F. Scholz, A. Jaworksi, and Z. Stojek (1995). J. Electroanal. Chem.. 398, 23.CrossRefGoogle Scholar
  9. 9.
    Bruker AXS Inc SADABS (Version 2.11) (Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA, 2004).Google Scholar
  10. 10.
    G. M. Sheldrick SHELX-97 (Universität Göttingen, Germany, 1997).Google Scholar
  11. 11.
    L. J. Farrugia ORTEP-3 (Department of Chemistry, University of Glasgow, 1997).Google Scholar
  12. 12.
    A. J. Bard and I. R. Faulkner, Electrochemical Methods, Fundamentals and Applications (Wiley, New York, 2001).Google Scholar
  13. 13.
    W. Bronger, H.-J. Miessen, R. Neugröshel, D. Schmitz, and M. Spangenberg (1985). Z. Anorg. Allg. Chem.. 525, 41.CrossRefGoogle Scholar
  14. 14.
    Y. V. Mironov, T. E. Albrecht-Schmitt, and J. A. Ibers (1997). Inorg. Chem.. 36, 944.CrossRefGoogle Scholar
  15. 15.
    V. E. Fedorov, Y. V. Mironov, V. P. Fedin, H. Imoto, and T. Saito (1996). Acta Crystallogr. Sect. C. 52, 1065.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Artem L. Gushchin
    • 1
  • Maxim N. Sokolov
    • 1
  • Pavel A. Abramov
    • 1
  • Nina F. Zakharchuk
    • 1
  • Vladimir P. Fedin
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations