Journal of Cluster Science

, Volume 19, Issue 1, pp 231–245 | Cite as

Synthesis, Characterization and Crystal Structures of New Difurylphosphido-bridged Dinuclear Ruthenium Carbonyl Complexes Derived from Ferrocenylacetylene Ligands

  • Wai-Yeung Wong
  • Fai-Lung Ting
  • Pui-Ling Lau
Original Paper


The difurylphosphido-bridged dinuclear complex [Ru2(CO)6(μ-PFu2)(μ-η12-Fu)] (Fu = 2-furyl) 1 readily reacts with two equivalents of each of the terminal alkynes HC≡CR (R = Fc, p-C6H4Fc, p-C6H4NO2, Fc = Fe(η5-C5H5)(η5-C5H4)) by an interesting head-to-tail ynyl coupling with a furan group to form a series of phosphido-bridged diruthenium compounds containing a novel furyl-substituted C4 hydrocarbyl chain of stoichiometry [Ru2(CO)4(μ-PFu2){μ-η1123-RCC(H)C(R)C(H)Fu}] (R = Fc 2, p-C6H4Fc 3, p-C6H4NO2 4) in moderate to good yields. Reaction of 1 with an equimolar amount of HC≡CFc and HC≡C(p-C6H4NO2) afforded a pair of isomers of [Ru2(CO)4(μ-PFu2){μ-η1123-R1CC(H)C(R2)C(H)Fu}] (R1 = Fc, R2 = p-C6H4NO2 5a; R1 = p-C6H4NO2, R2 = Fc 5b) together with a small mixture of 4. X-ray crystal structures of 2, 3, 5a and 5b are reported. All of these new alkyne-derived dinuclear complexes are electron precise with 34 cluster valence electrons in which the μ-η12-furyl ligand acts as a three-electron donor and the μ-phosphido Ru2 framework is retained in the products upon alkyne coupling reactions. The resulting organic fragment of each complex is coordinated to the Ru atoms via a π, a π-allyl and two σ bonds, and donates seven electrons to the metal core.


Alkynes Crystal structures Ferrocene Phosphido ligands Ruthenium 



Financial support from the Faculty Research Grants of Hong Kong Baptist University (FRG/01-02/I-31) is gratefully acknowledged.


  1. 1.
    (a) B. F. G. Johnson (ed.), Transition Metal Clusters (Wiley, New York, 1980); (b) P. Braunstein, L. A. Oro, and P. R. Raithby (eds.), Metal Clusters in Chemistry (Wiley-VCH, New York, 1999), Vols. 1–3; (c) R. D. Adams, B. Captain, W. Fu, M. B. Hall, J. Manson, M. D. Smith, and C. E. Webster (2004). J. Am. Chem. Soc. 126, 5253.Google Scholar
  2. 2.
    (a) R. D. Adams and F. A. Cotton (ed.), Catalysis by Di- and Polynuclear Metal Cluster Complexes (Wiley-VCH, New York, 1998); (b) D. F. Shriver, H. D. Kaesz, and R. D. Adams (ed.), The Chemistry of Metal Cluster Complexes (Wiley-VCH, New York, 1990).Google Scholar
  3. 3.
    F. A. Cotton and B. Hong (1992). Prog. Inorg. Chem. 40, 179.CrossRefGoogle Scholar
  4. 4.
    C. A. Tolman (1977). Chem. Rev. 77, 313.CrossRefGoogle Scholar
  5. 5.
    N. G. Andersen and B. A. Keay (2001). Chem. Rev. 101, 997.CrossRefGoogle Scholar
  6. 6.
    (a) N. Basescu, Z. X. Liu, D. Moses, A. J. Heeger, H. Naarmann, and N. Theophilon (1987). Nature (London) 327, 403; (b) R. D. Adams and B. Qu (2000). Organometallics 19, 2411; (c) R. D. Adams, O.-S. Kwon, B. Qu, and M. D. Smith (2001). Organometallics 20, 5225; (d) R. D. Adams, B. Qu, M. D. Smith, and T. A. Albright (2002). Organometallics 21, 2970; (e) R. D. Adams, B. Qu, and M. D. Smith (2002). Organometallics 21, 3867; (f) R. D. Adams, B. Qu, and M. D. Smith (2002). Organometallics 21, 4847; (g) W.-Y. Wong, S. Chan, and W.-T. Wong (1995). J. Chem. Soc., Dalton Trans. 1497; (h) J. Ros, G. Commenges, R. Mathieu, X. Solans, and M. Font-Altaba (1985). J. Chem. Soc., Dalton Trans. 1087; (i) M. H. Chisholm, J. A. Heppert, and J. C. Huffman (1984). J. Am. Chem. Soc. 106, 1151; (j) L. R. Beanan, Z. A. Rahman, and J. B. Keister (1983). Organometallics 2, 1062; (k) L. R. Beanan and J. B. Keister (1985). Organometallics 4, 1713; (l) M. R. Churchill, J. C. Fettinger, J. B. Keister, R. F. See, and J. F. Ziller (1985). Organometallics 4, 2112.Google Scholar
  7. 7.
    (a) W.-Y. Wong, F.-L. Ting, and W.-L. Lam (2001). J. Chem. Soc., Dalton Trans. 2981; (b) W.-Y. Wong, F.-L. Ting, and W.-L. Lam (2002). Eur. J. Inorg. Chem. 2103; (c) W.-Y. Wong, F.-L. Ting, and Z. Lin (2003). Organometallics 22, 5100; (d) W.-Y. Wong, F.-L. Ting, Y. Guo, and Z. Lin (2005). J. Cluster Sci. 16, 185.Google Scholar
  8. 8.
    (a) M. Rosenblum, N. Brawn, J. Papenmeier, and M. Applebaum (1996). J. Organomet. Chem. 6, 173; (b) W.-Y. Wong, G.-L. Lu, K.-F. Ng, C.-K. Wong, and K.-H. Choi (2001). J. Organomet. Chem. 637639, 150; (c) W.-Y. Wong, G.-L. Lu, K.-F. Ng, K.-H. Choi, and Z. Lin (2001). J. Chem. Soc., Dalton Trans. 3250; (d) W.-Y. Wong, K.-Y. Ho, and K.-H. Choi (2003). J. Organomet. Chem. 670, 17; (e) W.-Y. Wong, G.-L. Lu, K.-H. Choi, and Y.-H. Guo (2005). J. Organomet. Chem. 690, 177.Google Scholar
  9. 9.
    (a) C. Simionescu, T. Lixandru, I. Mazilu, and L. Tataru (1976). J. Organomet. Chem. 113, 23; (b) W.-Y. Wong, K.-Y. Ho, S.-L. Ho, and Z. Lin (2003). J. Organomet. Chem. 683, 341.Google Scholar
  10. 10.
    S. Takahashi, Y. Kuroyama, K. Sonogashira, and N. Hagihara (1980). Synthesis 627.Google Scholar
  11. 11.
    Bruker-AXS, SAINT, Reference Manual, Siemens Energy and Automation (Madison, Wisconsin, USA, 1994–1996).Google Scholar
  12. 12.
    G. M. Sheldrick, SADABS, Empirical Absorption Correction Program (University of Göttingen, 1997).Google Scholar
  13. 13.
    G. M. Sheldrick, SHELXTL TM , Reference Manual, ver. 5.1 (Madison, Wisconsin, USA, 1997).Google Scholar
  14. 14.
    J. E. Davies, M. J. Mays, P. R. Raithby, K. Sarveswaran, and G. A. Solan (2001). J. Chem. Soc., Dalton Trans. 1269.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryHong Kong Baptist UniversityKowloon TongHong Kong, P.R. China

Personalised recommendations