Journal of Cluster Science

, Volume 19, Issue 1, pp 133–145 | Cite as

Iridium Insertion to Triosmium Cluster Containing Unsaturated Os–Os Bonds

  • Yui-Bing Lee
  • Wing-Tak Wong
Original Paper


Treatment of the triosmium hydrido cluster, [Os3(μ-H)2(CO)10], with one equivalent of [IrCp*Cl2]2 (Cp* = pentamethylcyclopentadiene) in refluxing THF afforded four osmium–iridium clusters, including [Os3Ir2(μ-CO)(μ-H)2(CO)9(Cp*)2] (1), [Os3IrCp*(μ-H)3(μ-Cl)(CO)9] (2), [Os3IrCp*(μ-H)(μ-Cl)(μ-CO)(CO)9] (3) and [Os2IrCp*(μ-H)(μ-Cl)(CO)7] (4), in moderate yields. The reactivity of complex 3 with hydrogen, carbon monoxide, and thallium hexafluorophosphate was studied. Complex 4 was found to react with [Os3(μ-H)2(CO)10] to give 2 and 3. All of the new compounds were characterized by conventional spectroscopic methods and single-crystal X-ray analysis.


Osmium Iridium Clusters Cyclopentadienyl 



We gratefully acknowledge the financial support of a Hong Kong Research Grant and the University of Hong Kong. Y.-B. Lee acknowledges the receipt of a postgraduate studentship (2006–2007) administrated by the University of Hong Kong.


  1. 1.
    P. Braunstein, L. A. Oro, and P. R. Raithby, Metal Clusters in Chemistry, Vol. II, (Wiley-VCH, Germany, 1999)Google Scholar
  2. 2.
    P. Jena, S. N. Khanna, and B. K. Pao, Clusters and Nano-assembles, Physical and Biological Systems (Richmond, Virginia, USA, 2003)Google Scholar
  3. 3.
    M. W. DeGroot, H. Rosner, and J. F. Corrigan (2006). Chem. Eur. J. 12, 1547CrossRefGoogle Scholar
  4. 4.
    V. J. Johnston, F. W. B. Einstein, and R. K. Pomeroy (1987). J. Am. Chem. Soc. 109, 7220CrossRefGoogle Scholar
  5. 5.
    L.J. Farrugia, A. G. Orpen, and F. G. A. Stone (1983). Polyhedron. 2, 171CrossRefGoogle Scholar
  6. 6.
    P. Srinivasan, J. Tan, and W. K. Leong (2006). J. Organomet. Chem. 691, 1288CrossRefGoogle Scholar
  7. 7.
    P. Srinivasan and W. K. Leong (2006). J. Organomet. Chem. 691, 403CrossRefGoogle Scholar
  8. 8.
    G. Süss-Fink, S. Haak, V. Ferrand, and H. Stœckli-Evans (1999). J. Mol. Catal. A Chem. 143, 163CrossRefGoogle Scholar
  9. 9.
    S. Haak, G. Süss-Fink, A. Neels and H. Stœckli-Evans (1999). Polyhedron 18, 1675CrossRefGoogle Scholar
  10. 10.
    A. Riesen, F. W. B. K. Ma, R. K. Pomeroy, and J. A. Shipley (1991). Organometallics 10, 3629CrossRefGoogle Scholar
  11. 11.
    D. J. Dyson (2004). Coord. Chem. Rev. 248, 2443CrossRefGoogle Scholar
  12. 12.
    S. Y.-W. Hung and W.-T. Wong (1999). J. Organomet. Chem. 580, 48CrossRefGoogle Scholar
  13. 13.
    J. P.-K. Lau and W.-T. Wong (2003). Inorg. Chem. Comm. 6, 733CrossRefGoogle Scholar
  14. 14.
    S.G. Shore and W. L. Hsu (1983). J. Am. Chem. Soc. 105, 655CrossRefGoogle Scholar
  15. 15.
    S. A. R. Knox, J. W. Koepke, M. A. Andrews and H. D. Kaesz (1975). J. Am. Chem. Soc. 97, 3942CrossRefGoogle Scholar
  16. 16.
    C. White, A. Yateo, P. M. Maitlis and D. M. Heinekey (1992). Inorg. Synth. 29, 228CrossRefGoogle Scholar
  17. 17.
    R. D. Adams, J. C. Li, and W. Wu (1991). Inorg. Chem. 30, 3613CrossRefGoogle Scholar
  18. 18.
    A. J. Amoroso, B. F. G. Johnson, J. Lewis, C. K. Li, C. A. Morewood, P. R. Raithby, M. D. Vargas, and W. T. Wong (1995). J. Clust. Sci. 6, 163CrossRefGoogle Scholar
  19. 19.
    Z. Ahkter, A. J. Edwards, S. L. Ingham, J. Lewis, A. M. M. Castro, P. R. Raithby, and G. P. Shields (2000). J. Clust. Sci. 11, 217CrossRefGoogle Scholar
  20. 20.
    M. R. Churchill and B. G. DeBoer (1977). Inorg. Chem. 16, 878CrossRefGoogle Scholar
  21. 21.
    J. S. Plotkin, D. G. Always, C. R. Weisenberger, and S. G. Shore (1980). J. Am. Chem. Soc. 102, 6156CrossRefGoogle Scholar
  22. 22.
    H. Kaesz (1990). Inorg. Synth. 28, 238CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryThe University of Hong KongHong Kong SARP.R. China

Personalised recommendations