Advertisement

Journal of Cluster Science

, Volume 18, Issue 3, pp 764–771 | Cite as

Accessing HgSe x S 1−x Nanoparticles Using the Single-Source Reagent Me3Si–SeS–SiMe3

  • Elizabeth A. Turner
  • Harald Rösner
  • Yining Huang
  • John F. Corrigan
Original Papers

Abstract

Mercury-selenosulfide (HgSe x S 1-x ) nanoparticles have been synthesized using the single-source reagent Me3Si–SeS–SiMe3. The reagent distributes Se2− and S2− to the metal core as the reaction between Me3Si–SeS–SiMe3 and mercury acetate occurs via a redox pathway, ultimately giving rise to Se–S bond cleavage. Particles are characterized by EDX, TEM and powder X-ray diffraction analysis in conjunction with UV–Visible absorption spectroscopy.

Keywords

Nanoparticles Selenosulfide Mercury Phosphine 

Notes

Acknowledgements

We gratefully acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support of this research, equipment funding and for a postgraduate scholarship (E. A. T.). The Government of Ontario Premier’s Research Excellence Awards (PREA) program is also acknowledged for financial support and The University of Western Ontario and the Canada Foundation for Innovation (CFI) are thanked for equipment funding.

References

  1. 1.
    (a) J. F. Corrigan, S. Balter, and D. Fenske (1996). J. Chem. Soc. Dalton 729; (b) J. F. Corrigan and D. Fenske (1997). Chem. Commun. 1837; (c) D. T. T. Tran, N. J. Taylor, and J. F. Corrigan (2000). Angew. Chem. Int. Ed. 39, 935; (d) A. Lorenz and D. Fenske (2001). Angew. Chem. Int. Ed. 40, 4402; (e) A. I. Wallbank and J. F. Corrigan (2001). Chem. Commun. 377; (f) T. P. Lebold, D. L. B. Stringle, M. S. Workentin, and J. F. Corrigan (2003). Chem. Commun. 1398; (g) J. Olkowska-Oetzel, P. Sevillano, A. Eichhöfer, and D. Fenske (2004). Eur. J. Inorg. Chem. 1100; (h) M. W. DeGroot, N. J. Taylor, and J. F. Corrigan (2005). Inorg. Chem. 44, 5447Google Scholar
  2. 2.
    (a) M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, A. R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, and L.E. Brus (1988). J. Am. Chem. Soc. 110, 3046; (b) S. M. Stuczynski, J. G. Brennan, and M. L. Steigerwald (1989). Inorg. Chem. 28, 4431; (c) A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carrol, and L. E. Brus (1990). J. Am. Chem. Soc. 112, 1327; (d) C. B. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706.Google Scholar
  3. 3.
    M. W. DeGroot and J. F. Corrigan in M. Fujita, A. Powell, and C. Creutz (eds.), Comprehensive Coordination Chemistry II (Pergamon, Oxford, 2004), Vol. 7, pp. 57–123.Google Scholar
  4. 4.
    (a) H. H. Sisler and N. K. Kotia (1971). J. Org. Chem. 36, 1700; (b) N. P. Luthra, R. B. Dunlap, and J. D. Odom (1982). J. Magn. Reson. 46, 152; (c) G. Aravamudan, T. Subrahmanyan, M. Seshasayee, and G. V. N. Appa Rao (1983). Polyhedron 2, 1025; (d) M. Pridöhl, R. Steudel, and F. Baumgart (1993). Polyhedron 12, 2577; (e) M. D. Ryan and D. N. Harpp (1997). Tetrahedron Lett. 38, 8829; (f) Y. Hou, A. Z. Rys, I. A. Abu-Yousef, and D. N. Harpp (2003). Tetrahedron Lett. 44, 4279; (g) J. Meija, T. L. Beck, and J. A. Caruso (2004). J. Am. Soc. Mass Spectrom. 15, 1325; (h) W. Mazurek and A. G. Moritz (1986). Inorg. Chim. Acta 113, 143; (i) C. Köllemann and F. Sladky (1991). Organometallics 10, 2101; (j) F. T. Edelmann, A. Fischer, and I. Haiduc (2003). Inorg. Chem. Commun. 6, 958; (k) N. Petragnani, L. Torres, and K. J. Wynne (1975). J. Organomet. Chem. 92, 185.Google Scholar
  5. 5.
    E.A. Turner, Y. Huang, and J. F. Corrigan (2007). Can. J. Chem., in press.Google Scholar
  6. 6.
    E. A. Turner, Y. Huang, and J.F. Corrigan (accepted 2007). Z. Anorg. Allg. Chem. Google Scholar
  7. 7.
    (a) R. Bailey and S. Nie (2003). J. Am. Chem. Soc. 125, 7100; (b) Y. Li, H. Zhong, R. Li, Y. Zhou, C. Yang, and Y. Li (2006). Adv. Funct. Mater. 16, 1705; (c) L. A. Swafford; L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal (2006). J. Am. Chem. Soc. 128, 12299; (d) G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo (1999). Thin Solid Films 349, 220; (e) R. S. Mane and C. D. Lokhande (1999). Thin Solid Films 304, 56; (f) P. Huber, H. Karl, and B. Stritzker (2006). Appl. Surf. Sci. 252, 2497; (g) C. Allahverdi, M. H. Yükselici, R. Turan, and A. Seyhan (2004). Semicond. Sci. Technol. 19, 1005; (h) Y. Liu, Y. Xu, J.-P. Li, B. Zhang, D. Wu, and Y.-H. Sun (2006). Mater. Res. Bull. 41, 99; (i) A. Pan, H. Yang, R. Yu, and B. Zou (2006). Nanotechnology 17, 1083.Google Scholar
  8. 8.
    (a) A. Ganguly, S. Chaudhuri, and A. K. Pal (2001). J. Phys. D: Appl. Phys. 34, 506; (b) K. M. M. Abo-Hassan, M. R. Muhamad, and S. Radhakrishna (2005). Physica B 358, 256; (c) J. H. Song, E. D. Sim, K. S. Baek, and S. K. Chang (2000). J. Cryst. Growth 214–215, 460; (d) K. T. Ramakrishna, Y. V. Subbaiah, T. B. S. Reddy, D. Johnston, I. Forbes, and R. W. Miles (2003). Thin Solid Films 431–432, 340.Google Scholar
  9. 9.
    (a) A. Eichhöfer and E. Tröster (2002). Eur. J. Inorg. Chem. 2253; (b) A. Eichhöfer and P. Deglmann (2004). Eur. J. Inorg. Chem. 349; (c) A. Eichhöfer (2005). Eur. J. Inorg. Chem. 1245.Google Scholar
  10. 10.
    (a) M. Shao, L. Kong, Q. Li, W. Yu, and Y. Qian (2003). Inorg. Chem. Commun. 6, 737; (b) T. Ding, J.-R. Zhang, S. Long, and J.-J. Zhu (2003). Microelectron. Eng. 66, 46.Google Scholar
  11. 11.
    (a) J. Zhu, S. Liu, O. Palchik, Y. Koltypin, and A. Gedanken (2000). J. Solid State Chem. 153, 342; (b) H. Wang and J.-J. Zhu (2004). Ultrason. Sonochem. 11, 293.Google Scholar
  12. 12.
    (a) P. Sreekumari Nair, T. Radhakrishnan, N. Revaprasadu, C. G. C. E. van Sittert, V. Djokovic, and A. S. Luyt (2004). Mater. Lett. 58, 361; (b) P. Sreekumari Nair, T. Radhakrishnan, N. Revaprasadu, G. A. Kolawole, and P. O’Brien (2004). J. Mater. Chem. 14, 581.Google Scholar
  13. 13.
    (a) H. Wang, S. Xu, X.-N. Zhao, J.-J. Zhu, and X.Q. Xin (2002). Mater. Sci. Eng. B 96, 60; (b) T. Ding, J.-J. Zhu, and J.-M. Hong (2003). Mater. Lett. 57, 4445; (c) Y. Wang, Q.-S. Wu, and Y.-P. Ding (2004). J. Nanopar. Res. 6, 253; (d) T. Ding, J.-R. Zhang, J.-M. Hong, J.-J. Zhu, and H.-Y. Chen (2004) J. Cryst. Growth 260, 527.Google Scholar
  14. 14.
    (a) Y. Li, Y. Ding, H. Liao, and Y. Qian (1999). J. Phys. Chem. Solids 60, 965; (b) A. Rogach, S. Kershaw, M. Burt, M. Harrison, A. Kornowski, A. Eychmüller, and H. Weller (1999). Adv. Mater. 11, 552; (c) A. Eychmüller and A. L. Rogach (2000). Pur Appl. Chem. 72, 179.Google Scholar
  15. 15.
    M. Kuno, K. A. Higginson, S. B. Qadri, M. Yousuf, S. H. Lee, B. L. Davis, and H. Mattoussi (2003). J. Phys.Chem. B 107, 5758.CrossRefGoogle Scholar
  16. 16.
    K.A. Higginson, M. Kuno, J. Bonevich, S. B. Qadri, M. Yousuf, and H. Mattoussi (2002) J. Phys. Chem. B. 106, 9982.CrossRefGoogle Scholar
  17. 17.
    A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, and F. J. Timmers (1996). Organometallics. 15, 1518.CrossRefGoogle Scholar
  18. 18.
    C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry (Pearson Education Ltd., Essex, England, 2001), pp. 580–581.Google Scholar
  19. 19.
    J. Jasieniak and P. Mulvaney (2007). J. Am. Chem. Soc. 129, 2841.CrossRefGoogle Scholar
  20. 20.
    (a) J. M. Charnock, L. N. Moyes, R. A. D. Pattrick, J. F. W. Mosselmans, D. J. Vaughan, and F. R. Livens (2003). Am. Mineral 88, 1197; (b) Y. Li, Y. Ding, H. Liao, and Y. Qian (1999), J. Phys. Chem. Solids 60, 965.Google Scholar
  21. 21.
    A. R. West, Solid State Chemistry and its Applications (John Wiley & Sons Ltd., New York, NY, 1984), pp. 237, 247.Google Scholar
  22. 22.
    (a) L. Vegard (1921). Z. Phys. 5, 17; (b) A. R. Denton and N. W. Ashcroft (1991), Phys. Rev. A 43, 3161.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryThe University of Western OntarioLondonCanada
  2. 2.Institut für Nanotechnologie, Forschungszentrum Karlsruhe GmbHEggenstein-LeopoldshafenGermany

Personalised recommendations