Advertisement

Journal of Cluster Science

, Volume 18, Issue 4, pp 869–881 | Cite as

Hydrocarbon Molecules Deposited onto Silicon Surfaces: A DFT Study of Adsorption and Conductance

  • A. M. Mazzone
  • R. Rizzoli
Original Paper

Abstract

The purpose of this study is a systematic description of the properties of small deposited clusters in dependence of the cluster geometry and composition and of the shape of the adsorbing surface. Therefore hydrocarbon molecules deposited onto the dimerized Si(100) surface and onto monolayer steps of this surface, are considered and the properties of these systems are determined using the Density Functional and scattering theories. It has been found that, though the step is a weaker sink than the flat surface, the molecules are bonded to the step and the adsorption geometries reproduce the ones of the flat surface. The transmission function depends on the type of molecule and of the substrate and on the transport channels available to the deposited system. However the contact potential has a paramount importance and deep resonances are produced by a proper tuning of this quantity.

Keywords

Hydrocarbon molecules Silicon steps DFT Scattering theories 

References

  1. 1.
    J. T. Yates Jr. (1998). Science 279, 335.CrossRefGoogle Scholar
  2. 2.
    S. F. Bent (2002). Surf. Sci. 500, 879.CrossRefGoogle Scholar
  3. 3.
    P. A. Taylor, R. M. Wallace, C. C. Cheng, W. H. Weinberg, M. J. Dresser, W. J. Choke, and J. T. Jates Jr. (1992). J. Am. Chem. Soc. 114, 6754.CrossRefGoogle Scholar
  4. 4.
    Y. C. Choi, W. Y. Kim, K.-S. Park, P. Trakehswar, K. S. Kim, T. S. Kim, and J. Y. Lee (2005). J. Chem. Phys. 122, 94706.CrossRefGoogle Scholar
  5. 5.
    S. Jalili and H. R. Tabar (2005). Phys. Rev. B. 71, 165410.CrossRefGoogle Scholar
  6. 6.
    N. Agrait, A. L. Yegati, and J. M. van Ruitenbeck (2004). Phys. Rep. 377, 81.CrossRefGoogle Scholar
  7. 7.
    C. Gonzalez, P. C. Snijders, J. Ortega, R. Perez, F. Flores, S. Rogge, and H. H. Weitering (2004). Phys. Rev. Lett. 12, 126106.CrossRefGoogle Scholar
  8. 8.
    J. R. Ahn, N. D. Kim, H. S. Lee, C. C. Hwang, B. S. Kim, and H. W. Yeom (2002). Phys. Rev. B. 66, 153403.CrossRefGoogle Scholar
  9. 9.
    J. N. Crain, J. L. McChesney, F. Zheng, M. C. Gallagher, P. C. Snijders, M. Bissen, C. Gundelach, S. C. Erwin, and F. J. Himpsel (2004). Phys. Rev. B. 69, 125401.CrossRefGoogle Scholar
  10. 10.
    S. S. Lee, J. R. Ahn, N. D. Kim, J. H. Min, C. G. Wang, J. W. Chun, H. W. Yeom, S. V. Ryjkov, and S. Hasegawa (2002). Phys. Rev. Lett. 88, 196401.CrossRefGoogle Scholar
  11. 11.
    S. C. Erwin (2003). Phys. Rev. Lett. 91, 206101.CrossRefGoogle Scholar
  12. 12.
    J. N. Crain, A. Kirakosian, K. N. Altman, C. Bromberger, S. C. Erwin, J. L. McChesney, J. J. Lin, and F. J. Himpsel (2003). Phys. Rev. Lett. 90, 176805.CrossRefGoogle Scholar
  13. 13.
    J. Schåfer, S. C. Erwin, M. Hansmann, Z. Song, E. Rotenberg, S. K. Devan, C. S. Heelberg, and J. Horn (2003). Phys. Rev. B. 67, 085411.CrossRefGoogle Scholar
  14. 14.
    A. M. Mazzone and R. Rizzoli (2007). Model. Simul. Mater. Sci. Eng. 15, 523.Google Scholar
  15. 15.
    D. J. Chadi (1987). Phys. Rev. Lett. 59, 1691.CrossRefGoogle Scholar
  16. 16.
    T. W. Poon, S. Yip, P. S. Ho, and F. F. Abraham (1992). Phys. Rev. B. 65, 2161.Google Scholar
  17. 17.
    A. M. Mazzone (2007). Surf. Sci. 14, 601.Google Scholar
  18. 18.
    A. M. Mazzone (2005). Physica E 27, 204.CrossRefGoogle Scholar
  19. 19.
    A. M. Mazzone and R. Rizzoli (2006). Modell. Simul. Mater. Sci. 14, 923.CrossRefGoogle Scholar
  20. 20.
    N. D. Lang (1995). Phys. Rev. B. 52, 5335.CrossRefGoogle Scholar
  21. 21.
    T. Seideman and W. H. Miller (1992). J. Chem. Phys. 96, 4412.CrossRefGoogle Scholar
  22. 22.
    A. Kopf and P. Saalfrank (2004). Chem. Phys. Lett. 386, 17.CrossRefGoogle Scholar
  23. 23.
    S. N. Yaliraki et al. (1997). J. Phys. Chem. 111, 6997.Google Scholar
  24. 24.
    J. J. Palacios, A. J. Peres-Jimenez, E. Louis, and J. A. Verges (2001). Phys. Rev. B. 64, 115411.CrossRefGoogle Scholar
  25. 25.
    J. M. Seminario, C. de la Cruz, and P. A. Derosa (2001). J. Am. Chem. Soc. 923, 5616.CrossRefGoogle Scholar
  26. 26.
    M. L. Tiago and J. R. Chelikowsky (2006). Phys. Rev. B. 73, 205334.CrossRefGoogle Scholar
  27. 27.
    K. Ragachavari and V. Logovinsky (1985). Phys. Rev. Lett. 55, 2853.CrossRefGoogle Scholar
  28. 28.
    D. Porezag, Th. Frauenheim, Th. Köhler G. Seifert, and R. Kaschner (1995). Phys. Rev. B. 51, 12947.CrossRefGoogle Scholar
  29. 29.
    J. P. Perdew, J. A. Chevary, S. A. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B. 46, 6671.CrossRefGoogle Scholar
  30. 30.
    S. H. Xu, M. Keefe, Y. Yang, C. Chen, M. Yu, G. J. Lapejere, E. Rotenberg, J. Denlinger, and J. T. Jates Jr. (2000). Phys. Rev. Lett. 84, 939.CrossRefGoogle Scholar
  31. 31.
    R. Miotto, A. C. Ferraz, and G. P. Srivastava (2002). Phys. Rev. B. 65, 75401.CrossRefGoogle Scholar
  32. 32.
    J. K. Cho and L. Kleinman (2004). Phys. Rev. B. 69, 75303.CrossRefGoogle Scholar
  33. 33.
    J. Wang, D. A. Drabold, and A. Rockett (1995). Surf. Sci. 344, 251.CrossRefGoogle Scholar
  34. 34.
    Q.-M. Zhang, C. Roland, P. Boguslawki, and J. Berhnolc (1995). Phys. Rev. Lett. 344, 251.Google Scholar
  35. 35.
    A. M. Mazzone and R. Rizzoli (2007). Appl. Surf. Sci. 253, 4537.Google Scholar
  36. 36.
    M. A. Reed (1999). Proceedings of the IEEE 87, 652.CrossRefGoogle Scholar
  37. 37.
    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal (2002). J. Phys. Condens. Matter. 14, 2745.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.C.N.R-IMM- Sezione di BolognaBolognaItaly

Personalised recommendations