Advertisement

Journal of Cluster Science

, Volume 18, Issue 3, pp 618–629 | Cite as

Chalcogenido-Bridged Clusters by Reactions of Chalcogenostannate Salts

  • Christian Zimmermann
  • Christopher E. Anson
  • Stefanie Dehnen
Article

Abstract

Reactions of [enH]4[Sn2S6] or K6[Sn2Te6] with [Cp*CoCl]2 (Cp* = C5Me5), or [enH]4[Sn2Se6en (en = 1,2-diaminoethane) with [{CpFe(CO)2}2SnCl2] leads to the formation of three chalcogenido-bridged transition metal complexes via an unusual synthesis route. [(Cp*Co)3(μ 3-S)2] (1), [(Cp*Co)3(μ 3-Te)2] (2), and [{CpFe(CO)2}3{CpFe(CO)}Sn3Se4] (3) were structurally characterized by means of single-crystal X-ray diffractometry and represent previously unknown homologues of a selenium bridged analogue (1 or 2) or of Fe–S clusters (1 or 3). Compounds 1 and 2, together with the previously reported Se analogue, show a progression from a symmetrical closo-trigonal-bipyramidal structure to the square-pyramidal structure predicted by the Wade-Mingos Rules for a 50 electron cluster.

Keywords

Chalcogenido-bridged clusters chalcogenostannates X-ray diffractometry 

Notes

Acknowledgments

The authors gratefully acknowledge financial support of their work by the German Science Foundation (DFG), as well as provision of analytical equipment by Prof. Dr. D. Fenske and Prof. Dr. A. Powell. We thank D. Müller for recording the mass spectra.

References

  1. 1.
    (a) J. Wachter (1998). Angew. Chem. Int. Ed. 37, 750; (b) M. G. Kanatzidis and A. C. Sutorik (1995). Prog. Inorg. Chem. 43, 151; (c) G. W. Drake and J. W. Kolis (1994). Coord. Chem. Rev. 137, 131.Google Scholar
  2. 2.
    (a) S. Dehnen and C. Zimmermann (2000). Chem. Eur. J. 6, 2256; (b) S. Dehnen and C. Zimmermann (2000). Eur. J. Inorg. Chem. 1471; (c) C. Zimmermann and S. Dehnen (2001). Z. Anorg. Allg. Chem. 627, 847; (d) C. Zimmermann, C. E. Anson, A. L. Eckermann, M. Wunder, G. Fischer, I. Keilhauer, E. Herrling, B. Pilawa, O. Hampe, F. Weigend, and S. Dehnen (2004). Inorg. Chem. 43, 4595.Google Scholar
  3. 3.
    S. Dehnen and M. Melullis (2007). Coord. Chem. Rev. 251, 1259.Google Scholar
  4. 4.
    (a) S. Dehnen and C. Zimmermann (2002). Z. Anorg. Allg. Chem. 628, 2463; (b) G. Dittmar (1978). Z. Anorg. Allg. Chem. 453, 68; (c) C. Brinkmann, PhD thesis, TH Darmstadt, 1986.Google Scholar
  5. 5.
    D. J. Patmore, W. A. Graham (1966). Inorg. Chem. 5, 1405CrossRefGoogle Scholar
  6. 6.
    Sheldrick, G. M. Shelxtl 5.1, Bruker AXS Inc., 6300 Enterprise Lane (Madison, WI 53719-1173, USA, 1997).Google Scholar
  7. 7.
    (a) K. Wade (1976). Adv. Inorg. Chem. 18, 1; (b) D. M. P. Mingos (1984). Acc. Chem. Res. 17, 311.Google Scholar
  8. 8.
    (a) P. D. Frisch and L. F. Dahl (1972). J. Am. Chem. Soc. 94, 5082; (b) C. P. Casey, R. A. Widenhoefer, and R. K. Hayashi (1995). Inorg. Chem. 34, 1138; (c) K. A. Kubat-Martin, A. D. Rae, and L. F. Dahl (1984). Organometallics 4, 2221; (d) W. L. Olson and L. F. Dahl (1986). J. Am. Chem. Soc. 108, 7657; (e) C. R. Pulliam, J. B. Thoden, A. M. Stacy, B. Spencer, M. H. Englert, and L. F. Dahl (1991). J. Am. Chem. Soc. 113, 7398.Google Scholar
  9. 9.
    S. Dehnen (2005). Z. Anorg. Allg. Chem. 631, 604.CrossRefGoogle Scholar
  10. 10.
    (a) S. Otsuka, A. Nakamura, and T. Yoshida (1968). Liebigs Ann. Chem. 719, 54; (b) N. Kamijo and T. Watanabé (1979). Acta Cryst. B35, 2537; (c) M. Sorai, A. Kosaki, H. Suga, S. Seki, T. Yoshida, and S. Otsuka (1971). Bull. Chem. Soc. Jap. 44, 2364.Google Scholar
  11. 11.
    (a) H. Brunner, N. Janietz, W. Meier, G. Sergeson, J. Wachter, T. Zahn, and M. L. Ziegler (1985). Angew. Chem. Int. Ed. Engl. 24, 1060; (b) M. Cowie, R. L. DeKock, T. R. Wagenmaker, D. Seyferth, R. S. Henderson, and M. K. Gallagher (1989). Organometallics 8, 119; (c) J. J. Schneider, J. Hagen, D. Spieckermann, D. Blaser, R. Boese, F. F. de Biani, F. Laschi, and P. Zanelli (2000). Chem. Eur. J. 6, 237.Google Scholar
  12. 12.
    H. Schumann, M. Magerstädt, J. Pickardt (1982). J. Organomet. Chem. 240, 407CrossRefGoogle Scholar
  13. 13.
    (a) C. E. Strouse and L. F. Dahl (1971). J. Am. Chem. Soc. 93, 6032; (b) H. Brunner, D. Lucas, T. Monzon, Y. Mugnier, B. Nuber, B. Stubenhofer, A. C. Stückl, J. Wachter, R. Wanninger, and M. Zabel (2000). Chem. Eur. J. 6, 493.Google Scholar
  14. 14.
    K. Merzweiler and L. Weisse (1990). Z. Naturforsch. 45b, 971.Google Scholar
  15. 15.
    A. Blecher, M. Dräger and B. Mathiasch (1981). Z. Naturforsch. 36b, 1361.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Christian Zimmermann
    • 1
  • Christopher E. Anson
    • 1
  • Stefanie Dehnen
    • 2
  1. 1.Institut für Anorganische Chemie der Universität KarlsruheKarlsruheGermany
  2. 2.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations