Advertisement

Journal of Cluster Science

, Volume 18, Issue 3, pp 564–574 | Cite as

Reaction of a bis(bimetallic)-supported butadiyndiyl ligand with terminal acetylenes

  • Victoria P. Colquhoun
  • Andrés E. Goeta
  • Paul J. Low
Article

Abstract

The bis(bimetallic) diyndiyl complex [{Fe2(CO)6(μ-PPh2)}2(μ-C≡CC≡C)] reacts readily with terminal alkynes to give a number of products. One of these has been crystallographically and spectroscopically characterised, revealing facile insertion of a terminal alkyne into one metal-C σ-bond of the precursor to give a novel tetrametallic compound which features an extended “carbon-rich” ligand. The product is derived from a Fe–C bond cleavage reaction, coupled with C–C and C–P bond formation, and further illustrates the remarkable, and as yet poorly mapped, reactivity of C4 fragments on polymetallic frameworks.

Keywords

iron bimetallic alkyne polycarbon carbene 

Notes

Acknowledgments

VC was a visiting project student from the University of Wuerzburg, hosted in the PJL laboratory at the University of Durham. We thank the Universities of Wuerzburg and Durham for financial support of this work.

References

  1. 1.
    M. I. Bruce, P. J. Low (2004) Adv. Organomet. Chem. 50:179CrossRefGoogle Scholar
  2. 2.
    (a) S. Szafert, and J. A. Gladysz (2006). Chem. Rev. 106, PR1; (b) Q. L. Zheng, J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel and J. A. Gladysz (2006). Chem. Eur. J. 12, 6486; (c) W. Mohr, J. Stahl, F. Hampel and J. A. Gladysz (2003). Chem. Eur. J. 9, 3324; (d) T. Bartik, B. Bartik, M. Brady, R. Dembinski and J. A. Gladysz (1996). Angew. Chem., Int. Ed. Engl. 35, 414Google Scholar
  3. 3.
    (a) A. B. Antonova, M. I. Bruce, B. G. Ellis, M. Gaudio, P. A. Humphrey, M. Jevric, G. Melino, B. K. Nicholson, G. J. Perkins, B. W. Skelton, B. Stapleton, A. H. White, and N. N. Zaitseva (2004). Chem. Commun. 960; (b) M. I. Bruce, M. E. Smith, B. W. Skelton, and A. H. White (2001). J. Organomet. Chem. 637, 484Google Scholar
  4. 4.
    (a) F. Coat, F. Paul, C. Lapinte, L. Toupet, K. Costuas and J. F. Halet (2003). J. Organomet. Chem. 683, 368; (b) F. Coat and C. Lapinte (1996). Organometallics 15, 477Google Scholar
  5. 5.
    A. Sakurai, M. Akita, Y. Moro-oka (1999) Organometallics 18:3241CrossRefGoogle Scholar
  6. 6.
    (a) M. I. Bruce, K. Costuas, T. Davin, B. G. Ellis, J. F. Halet, C. Lapinte, P. J. Low, M. E. Smith, B. W. Skelton, L. Toupet and A. H. White (2005). Organometallics 24, 3864; (b) M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton, and A. H. White (2003). Organometallics 22, 3184; (c) M. I. Bruce, P. J. Low, K. Costuas, J. F. Halet, S. P. Best, and G. A. Heath (2000). J. Am. Chem. Soc. 122, 1949Google Scholar
  7. 7.
    (a) H. J. Jiao, K. Costuas, J. A. Gladysz, J. F. Halet, M. Guillemot, L. Toupet, F. Paul and C. Lapinte (2003). J. Am. Chem. Soc. 125, 9511; (b) M. Guillemot, L. Toupet, and C. Lapinte (1998). Organometallics 17, 1928; (c) F. Coat, M. A. Guillevic, L. Toupet, F. Paul and C. Lapinte (1997). Organometallics 16, 5988. (d) N. LeNarvor, L. Toupet, and C. Lapinte (1995) J. Am. Chem. Soc. 117, 7129Google Scholar
  8. 8.
    (a) C. Herrmann, J. Neugebauer, J. A. Gladysz, and M. Reiher (2005). Inorg. Chem. 44, 6174; (b) R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, and J. A. Gladysz (2000). J. Am. Chem. Soc. 122, 810; (c) F. Paul, W. E. Meyer, L. Toupet, H. J. Jiao, J. A. Gladysz, and C. Lapinte (2000). J. Am. Chem. Soc. 122, 9405; (d) M. Brady, W. Q. Weng, Y. L. Zhou, A. J. Amoroso, A. M. Arif, M. Bohme, G. Frenking, and J. A. Gladysz (1997). J. Am. Chem. Soc. 119, 775Google Scholar
  9. 9.
    (a) S. Kheradmandan, K. Heinze, H. W. Schmalle, and H. Berke (1999). Angew. Chem. Int. Ed. 38, 2270; (b) K. Venkatesan, T. Fox, H. W. Schmalle, and H. Berke (2005). Organometallics 24, 2834; (c) F. J. Fernandez, K. Venkatesan, O. Blacque, M. Alfonso, H. W. Schmalle, and H. Berke (2003). Chem. Eur. J. 9, 6192Google Scholar
  10. 10.
    (a) W. Y. Wong and C. L. Ho (2006). Coord. Chem. Rev. 250, 2627; (b) L. B. Gao, L. Y. Zhang, L. X. Shi, and Z. N. Chen (2005). Organometallics 24, 1678Google Scholar
  11. 11.
    (a) T. Ren (2005). Organometallics 24, 4854; (b) G. L. Xu, C. Y. Wang, Y. H. Ni, T. G. Goodson and T. Ren (2005). Organometallics 24, 3247; (c) W. Z. Chen and T. Ren (2006). Inorg. Chem. 45, 9175Google Scholar
  12. 12.
    (a) M. I. Bruce, N. N. Zaitseva and B. W. Skelton (2006). J. Organomet. Chem. 691, 759; (b) M. I. Bruce, B. W. Skelton, A. H. White and N. N. Zaitseva (2006). Organometallics 25, 4817; (c) M. I. Bruce, M. E. Smith, N. N. Zaitseva, B. W. Skelton, and A. H. White (2003). J. Organomet. Chem. 670, 170; (d) M. I. Bruce, B. W. Skelton, A. H. White, and N. N. Zaitseva (2003). J. Organomet. Chem. 683, 398; (e) A. B. Antonova, M. I. Bruce, P. A. Humphrey, M. Gaudio, B. K. Nicholson, N. Scoleri, B. W. Skelton, A. H. White, and N. N. Zaitseva (2006). J. Organomet. Chem. 691, 4694; (f) M. I. Bruce, N. N. Zaitseva, B. W. Skelton, and A. H. White (2005). J. Organomet. Chem. 690, 3268; (g) M. I. Bruce, K. A. Kramarczuk, N. N. Zaitseva, B. W. Skelton and A. H. White (2005). J. Organomet. Chem. 690, 1549Google Scholar
  13. 13.
    M. Akita, A. Sakurai, and Y. Moro-oka (1999). Chem. Commun. 101 Google Scholar
  14. 14.
    (a) G. H. Worth, B. H. Robinson, and J. Simpson (1992). Organometallics 11, 3863; (b) S. M. Elder, B. H. Robinson, and J. Simpson (1990). J. Organomet. Chem. 398, 165Google Scholar
  15. 15.
    (a) A. Albinati, P. Leoni, L. Marchetti, and S. Rizzato (2003). Angew. Chem. Int. Ed. 42, 5990; (b) D. M. Norton, C. L. Stern, and D. F. Shriver (1994). Inorg. Chem. 2701; (c) R. J. Dellaca and B. R. Penfold (1971). Inorg. Chem. 10, 1269Google Scholar
  16. 16.
    U. Rosenthal (2003). Angew. Chem. Int. Ed. 42, 1794Google Scholar
  17. 17.
    (a) M. I. Bruce (1997). Coord. Chem. Rev. 166, 91; (b) C. J. Adams, M. I. Bruce, J. F. Halet, S. Kahal, B. W. Skelton, and A. H. White (2001). J. Chem. Soc., Dalton Trans. 414;Google Scholar
  18. 18.
    (a) M. Akita and Y. Moro-oka (1995). Bull. Chem. Soc. Jpn 68, 420; (b) M. Akita, M. C. Chung, M. Terada, M. Miyauti, M. Tanaka and M. Moro-oka (1998). J. Organomet. Chem. 565, 49; (c) M. Akita, S. Sugimoto, H. Hirakawa, S. Kato, M. Terada, M. Tanaka and Y. Moro-oka (2001). Organometallics 20, 1555; (d) M. Terada, G. Higashihara, A. Inagaki and M. Akita (2003). Chem. Commun. 2984; (e) M. Akita, A. Sakurai, M. C. and Chung, Y. Moro-oka (2003) J. Organomet. Chem. 670, 2; (f) M. Akita, H. Hirakawa, M. Tanaka and Y. Moro-oka (1995) J. Organomet. Chem. 485, C14; (g) M. Akita, S. Sugimoto, M. Tanaka and Y. Moro-oka (1992) J. Am. Chem. Soc. 114, 7582Google Scholar
  19. 19.
    (a) C. S. Griffith, G. A. Koutsanonis, B. W. Skelton, and A. H. White (2002). Chem. Commun. 2174; (b) C. S. Griffith, G. A. Koutsantonis, B. W. Skelton, and A. H. White (2005). J. Organomet. Chem. 690, 3410; (c) C. S. Griffith, G. A. Koutsantonis, B. W. Skelton, and A. H. White (2005). Angew. Chem. Int. Ed. 44, 3038Google Scholar
  20. 20.
    W. Y. Lo, C. H. Lam, W. K. M. Fung, H. Z. Sun, V. W. W. Yam, D. Balcells, F. Maseras, and O. Eisenstein (2003). Chem. Commun. 1260Google Scholar
  21. 21.
    (a) D. Osella, O. Gambino, C. Nervi, M. Ravera, and D. Bertolino (1993). Inorg. Chim. Acta 206, 155; (b) D. Osella, L. Milone, C. Nervi, and M. Ravera (1995). J. Organomet. Chem. 488, 1; (c) P. A. Brooksby, N. W. Duffy, A. J. McQuillan, B. H. Robinson, and J. Simpson (1999). J. Organomet. Chem. 582, 183; (d) M.-C. Chung, A. Sakurai, M. Akita, and Y. Moro-oka (1999). Organometallics 18, 4684; (e) M. Akita, M.-C. Chung, A. Sakurai, and Y. Moro-oka (2000). Chem. Commun. 1285; (f) S. B. Falloon, S. Szafert, A. M. Arif, and J. A. Gladysz (1998). Chem. Eur. J. 4, 1033; (g) S. B. Falloon, A. M. Arif, and J. A. Gladysz (1997). Chem. Commun. 629Google Scholar
  22. 22.
    C. J. Adams, M. I. Bruce, E. Horn, B. W. Skelton, E. R. T. Tiekink, and A. H. White (1993). J. Chem. Soc., Dalton Trans. 3299Google Scholar
  23. 23.
    C. J. Adams, M. I. Bruce, P. A. Humphrey, B. W. Skelton, A. H. White (2001) Aust. J. Chem. 54:325CrossRefGoogle Scholar
  24. 24.
    M. I. Bruce, P. J. Low, N. N. Zaitseva, S. Kahlal, J. F. Halet, B. W. Skelton, and A. H. White (2000). J. Chem. Soc., Dalton Trans. 2939Google Scholar
  25. 25.
    P. J. Low, A. J. Carty, K. A. Udachin, and G. D. Enright (2001). Chem. Commun. 411Google Scholar
  26. 26.
    C. J. Adams, M. I. Bruce, B. W. Skelton, and A. H. White (1993). J. Organomet. Chem. 450, C9Google Scholar
  27. 27.
    C. J. Adams, M. I. Bruce, E. Horn, and E. R. T. Tiekink (1992). J. Chem. Soc., Dalton Trans. 1157Google Scholar
  28. 28.
    J. Cosier, A. M.Glazer (1986) J. Appl. Crystallogr. 19:105CrossRefGoogle Scholar
  29. 29.
    SMART V5.63, Data Collection software, Bruker Analytical X-ray Instruments Inc., Madison, WI, 2003Google Scholar
  30. 30.
    SAINT V6.45A, Data Reduction Software, Bruker Analytical X-ray Instruments Inc., Madison, WI, 2003Google Scholar
  31. 31.
    SHELXTL V6.12; Bruker analytical X-ray Instruments Inc., Madison, WI, 2001Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Victoria P. Colquhoun
    • 1
  • Andrés E. Goeta
    • 1
  • Paul J. Low
    • 1
  1. 1.Department of ChemistryDurham UniversityDurhamUK

Personalised recommendations