Advertisement

Journal of Cluster Science

, Volume 18, Issue 1, pp 205–216 | Cite as

A Dimeric Fe(III)-Substituted α-Keggin Tungstogermanate: {[α-GeFe2W10O38(OH)]2}14−

  • Ying Liu
  • Junfei Shang
  • Ganglin Xue
  • Huaiming Hu
  • Feng Fu
  • Jiwu Wang
Article

 

The dimeric Fe(III)-substituted α-Keggin tungstogermanate {[α-GeFe2W10O38(OH)]2}14− (1) was synthesized by reaction of iron(III) with [A-α-GeW9O34]10− in neutral medium and characterized by elemental analysis, IR, UV-Vis, TG-DSC and electrochemistry. An X-ray single-crystal analysis was carried out on K14[α-GeFe2W10O38(OH)]2 ·34H2O, which crystallizes in the monoclinic system, space group P21/c, with a = 20.510(3) Å, b = 15.565 (2) Å, c = 17.998(2) Å, β = 114.672(2)° and Z = 2. The polyanion 1 consists of two [α-GeFe2W10O38(OH)] Keggin moieties linked via two bridging hydroxo groups, leading to a planar Fe4O2(OH)2 cluster. The two half-units are related by an insertion center. The locating of the hydroxo groups is done by the bond valence sum calculations. The TG-DSC results show that the polyanion 1 is stable below 520 °C.

Keywords

Polyoxometalates structure elucidation iron germanium 

Notes

Acknowledgments

We gratefully thank the support of the Education Commission of Shaanxi Province (03JK077, 03JS006) and the Natural Science Foundation of Shaanxi Province (2003B01).

References

  1. 1.
    C. Hill (Ed.) (1998). Chem. Rev. 98, 1Google Scholar
  2. 2.
    Pope M. T., Müller A. (eds.), (1994). Polyoxometellates: From platonic solids to Antiretro-viral Activity, Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  3. 3.
    Musaev D. G., Morokuma K. (2004). Inorg. Chem. 43: 7702CrossRefGoogle Scholar
  4. 4.
    Kortz U., Matta S. (2001). Inorg. Chem. 40: 5857Google Scholar
  5. 5.
    Laronze N., Marrot J., Hervé G. (2003). Inorg. Chem. 42: 815CrossRefGoogle Scholar
  6. 6.
    Bi L.-H., Kortz U. (2004). Inorg. Chem. 43: 7961CrossRefGoogle Scholar
  7. 7.
    Kim G.-S., Zeng H.-d., Neiwert W. A., Cowan J. J., VanDerveer D., Hill C. L., Weinstock I. A. (2003). Inorg. Chem. 42: 5537CrossRefGoogle Scholar
  8. 8.
    Bassil B. S., Nellutia S., Kortz U., Stowe A. C., van Tol J., Dalal N. S., Keita B., Nadjo L. (2005). Inorg. Chem., 44: 2659CrossRefGoogle Scholar
  9. 9.
    Leclerc-Laronze N., Marrot J., Hervé G. (2005). Inorg. Chem. 44: 1275CrossRefGoogle Scholar
  10. 10.
    Anderson T. M., Neiwert W. A., Hardcastle K. I., Hill C. L. (2004). Inorg. Chem. 43: 7353CrossRefGoogle Scholar
  11. 11.
    Bi L.-H., Kortz U., Keita B., Najdo L., Borrmann H. (2004). Inorg. Chem. 43: 8367CrossRefGoogle Scholar
  12. 12.
    Kortz H., Jeannin Y. P., Tézé A., Hervé G., Isber S. (1999). Inorg. Chem. 38: 3670CrossRefGoogle Scholar
  13. 13.
    Finke R. G., Rapko B. Weakley T. J. R. (1989). Inorg. Chem. 28: 1573CrossRefGoogle Scholar
  14. 14.
    Nakagawa Y., Uehara K., Mizuno N. (2004). Inorg. Chem. 44: 14CrossRefGoogle Scholar
  15. 15.
    Kortz U., Isber S., Dickman M. H., Ravot D. (2000). Inorg. Chem. 39: 2915CrossRefGoogle Scholar
  16. 16.
    Tézé A., Vaissermann J. (2000). C. R. Acad. Sci. Série IIc,Chimie/Chemistry 3: 101Google Scholar
  17. 17.
    Liu J.-F., Zhao B.-L., Rong C.-Y., Pope M. T. (1993). Acta chim sinica 51: 368Google Scholar
  18. 18.
    Lu L. Y., Sun Y. J., Chen Y. G., Yu M., Peng J. (1994). J. Synth. React. Inorg. Met.-Org. Chem. 24: 1339Google Scholar
  19. 19.
    Meng L., Liu J. F. (1995). J. Chin. Chem. 13: 334CrossRefGoogle Scholar
  20. 20.
    Liu J.-F., Wang X.-H., Ma J.-F., Meng L. (1999). Acta Chim. Sinica 57: 769Google Scholar
  21. 21.
    Craciun C., David L. (2001). J. Alloys Compd. 323: 743CrossRefGoogle Scholar
  22. 22.
    Kortz U., Nellutla S., Stowe A. C., Dalal N. S., Rauwald U., Danquah W., Ravot D. (2004). Inorg. Chem. 43: 2308CrossRefGoogle Scholar
  23. 23.
    Bi L. H., Kortz U., Nellutla S., Stowe A. C., van Tol J., Dalal N. S., Keita B., Nadjo L. (2005). Inorg. Chem. 44: 896CrossRefGoogle Scholar
  24. 24.
    Hervé G., Tézé A. (1977). Inorg. Chem. 16: 2115CrossRefGoogle Scholar
  25. 25.
    Keita B., Lu Y. W., Nadjo L., Contant R., Abbessi M., Canny J., Richet M. (1999). J. Electroanal. Chem. 477: 146CrossRefGoogle Scholar
  26. 26.
    Bi L. H., Kortz U., Keita B., Nadjo L., Borrmann H. (2004). Inorg. Chem. 43: 8367CrossRefGoogle Scholar
  27. 27.
    Kortz U., Savelieff M. G., Bassil B. S., Dickman M. H. (2001). Angew. Chem. Int. Ed. 40: 3384CrossRefGoogle Scholar
  28. 28.
    Rocchiccioli-Deltchdff C., Fournier M., Frank R., Thouvenot R. (1983). Inorg. Chem. 22: 207CrossRefGoogle Scholar
  29. 29.
    Kortz U., Savelieff M. G., Bassil B. S., Keita B., Nadjo L. (2002). Inorg. Chem., 41: 783Google Scholar
  30. 30.
    Keita B., Lu Y.-W., Nadjo L., Contant R. (2000). Electrochem. Commun. 2: 720CrossRefGoogle Scholar
  31. 31.
    Nicoara A., Patrut A., Margineanu D., Müller A. (2003). Electrochem. Commun. 5: 511CrossRefGoogle Scholar
  32. 32.
    B. Keita, Y. W. Lu, L. Nadjo and R. Contant (2000). Eur. J. Inorg. Chem. 2463Google Scholar
  33. 33.
    Bard A. J., Faulkner L. R. (2001). Electrochemical Methods Fundamentals and Applications, Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ying Liu
    • 1
  • Junfei Shang
    • 2
  • Ganglin Xue
    • 1
    • 2
  • Huaiming Hu
    • 1
  • Feng Fu
    • 2
  • Jiwu Wang
    • 2
  1. 1.Department of Chemistry, Shaanxi Key Laboratory of Physico-Inorganic ChemistryNorthwest UniversityXi’anP.R. China
  2. 2.Department of ChemistryYanan UniversityYan’anP.R. China

Personalised recommendations