Advertisement

Journal of Cluster Science

, Volume 17, Issue 2, pp 183–195 | Cite as

Structural and Electrochemical Studies of Dicupric Wells–Dawson Sandwich-Type Complexes

  • Travis M. Anderson
  • Xikui Fang
  • Israel Martyr Mbomekalle
  • Bineta Keita
  • Louis Nadjo
  • Kenneth I. Hardcastle
  • Alireza Farsidjani
  • Craig L. Hill
Article

A new Wells–Dawson sandwich polyoxometalate, \(\alpha\alpha\alpha\alpha\)-[(NaOH2)2(CuII)2 (P2W15O56)2]18− (2P), has been obtained in good yield by the dissolution of solid \(\alpha\)-Na12[P2W15O56]·18H2O in an aqueous solution of Cu(II) and L-glutamic acid at pH 10. The arsenic analogue, \(\alpha\alpha\alpha\alpha\)-[(NaOH2)2(CuII)2(As2W15O56)2]18− (2As), is likewise prepared by using Na12[As2W15O56]·21H2O instead of Na12[P2W15O56]·18H2O. Diffraction quality crystals of both 2P and 2As were obtained by slow evaporation in air over several days. The X-ray structures of 2P and 2As reveal that two Cu(II) atoms are sandwiched between two \(\alpha\)-[P2W15O56]12− or two \(\alpha\)-[As2W15O56]12− ligands, respectively, while the other two positions of the central belt unit are occupied by two Na+ cations. Higher yields of 2As can be obtained by mixing CuCl2·2H2O and \(\alpha\)[Na12As2W15O56]·21H2O in acetate buffer. The electrochemistry of 2P and 2As is characterized by cyclic voltammograms in which the reduction of the Cu(II) centers is close to the redox pattern of the W-centers. The two Cu(II)-centers are simultaneously reduced to Cu(0); the separate steps could not be resolved for the individual Cu(II) centers. Complexes 2P and 2As constitute the second example, after \(\alpha\alpha\alpha\alpha\)-[(NaOH2)2(FeIII)2(P2W15O56)2]16− (1P) and \(\alpha\alpha\alpha\alpha\)-[(NaOH2)2(FeIII)2(As2W15O56)2]16− (1As), of a transition-metal-substituted sandwich polyoxometalate containing two electroactive d-electron metals.

Keywords

Polyoxometalates diphosphotungstates diarsenotungstates copper electrochemistry X-ray structure analysis 

Notes

Acknowledgments

We thank the DOE (Grant DE-FG02-03ER15461), the University Paris-Sud XI and CNRS (UMR 8000) for funding.

References

  1. 1.
    Contant R., Hervé G. (2002). Rev. Inorg. Chem. 22:63Google Scholar
  2. 2.
    Pope M. T. (2004). In: Wedd A. G. (eds). Comprehensive Coordination Chemistry II: Transition Metal Groups 3-6. Elsevier Science, New York, p. 635Google Scholar
  3. 3.
    Hill C. L. (2004). In: Wedd A.G. (eds). Comprehensive Coordination Chemistry II: Transition Metal Groups 3-6. Elsevier Science, New York p. 679Google Scholar
  4. 4.
    R. Neumann, Applications of Polyoxometalates in Homogeneous Catalysis, in NATO Science Series II: Mathematics, Physics, and Chemistry (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003), Vol. 98, p. 327Google Scholar
  5. 5.
    I. V. Kozhevnikov, Heterogeneous Catalysis by Heteropoly Compounds, in NATO Science Series II: Mathematics, Physics, and Chemistry (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003), Vol. 98, p. 351Google Scholar
  6. 6.
    E. Papaconstantinou, Photochemistry and Photocatalysis by Polyoxometalates, in NATO Science Series II: Mathematics, Physics, and Chemistry (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003), Vol. 98, p. 381Google Scholar
  7. 7.
    Borrás-Almenar J. J., Coronado E., Müller A. (eds) (2004). Polyoxometalate Molecular Science. Kluwer Academic Publishers, Dordrecht The NetherlandsGoogle Scholar
  8. 8.
    Katsoulis D. E. (1998). Chem. Rev. 98:359CrossRefGoogle Scholar
  9. 9.
    Baker L. C. W., McCutcheon T. P. (1956). J. Am. Chem. Soc. 78:4503CrossRefGoogle Scholar
  10. 10.
    Pope M.T., Müller A. (1991). Angew. Chem. Int. Ed. Engl. 30:34CrossRefGoogle Scholar
  11. 11.
    Rong C., Pope M. T. (1992). J. Am. Chem. Soc. 114:2932CrossRefGoogle Scholar
  12. 12.
    Anderson T. M., Neiwert W. A., Kirk M. L., Piccoli P. M. B., Schultz A. J., Koetzle T. F., Musaev D. G., Morokuma K., Cao R., Hill C. L. (2004). Science 306:2074CrossRefGoogle Scholar
  13. 13.
    Zhang X., Anderson T. M., Chen Q., Hill C. L. (2001). Inorg. Chem. 40:418CrossRefGoogle Scholar
  14. 14.
    L. Ruhlmann, L. Nadjo, J. Canny, R. Contant, and R. Thouvenot (2002). Eur. J. Inorg. Chem. 975Google Scholar
  15. 15.
    I. M. Mbomekalle, B. Keita, L. Nadjo, W. A. Neiwert, L. Zhang, K. I. Hardcastle, C. L. Hill, and T. M. Anderson (2003). Eur. J. Inorg. Chem. 3924Google Scholar
  16. 16.
    Anderson T. M., Hardcastle K. I., Okun N., Hill C. L. (2001). Inorg. Chem. 40:6418CrossRefGoogle Scholar
  17. 17.
    Anderson T. M., Zhang X., Hardcastle K. I., Hill C. L. (2002). Inorg. Chem. 41:2477CrossRefGoogle Scholar
  18. 18.
    L. Ruhlmann, J. Canny, J. Vaissermann, and R. Thouvenot (2004). Dalton Trans. 794Google Scholar
  19. 19.
    Mbomekalle I. M., Cao R., Hardcastle K. I., Hill C. L., Ammam M., Keita B., Nadjo L., Anderson T. M. (2005). C R Chimie 8:1077Google Scholar
  20. 20.
    Ruhlmann L., Canny J., Contant R., Thouvenot R. (2002). Inorg.Chem. 41:3811CrossRefGoogle Scholar
  21. 21.
    Hornstein B. J., Finke R. G. (2002). Inorg. Chem. 41:2720CrossRefGoogle Scholar
  22. 22.
    Bi L.-H., Wang E.-B., Peng J., Huang R.-D., Xu L., Hu C.-W. (2000). Inorg Chem. 39:671CrossRefGoogle Scholar
  23. 23.
    International Tables for X-ray Crystallography (Kynoch Academic Publishers, Dordrecht, The Netherlands, 2002) Vol. CGoogle Scholar
  24. 24.
    B. Keita, F. Girard, L. Nadjo, R. Contant, R. Belghiche, and M. J. Abbessi (2001). J. Electroanal. Chem. 508, 70Google Scholar
  25. 25.
    I. D. Brown and D. Altermatt (1985). Acta Cryst. B41, 244Google Scholar
  26. 26.
    B. Keita, I. M. Mbomekalle, L. Nadjo, and R. Contant (2001). Electrochem. Commun. 3, 267Google Scholar
  27. 27.
    Song W., Wang X., Liu Y., Jiu J., Xu H. (1999). J. Electroanal. Chem. 476:85CrossRefGoogle Scholar
  28. 28.
    Keita B., Mbomekalle I. M., Nadjo L. (2003). Electrochem. Commun. 5:830CrossRefGoogle Scholar
  29. 29.
    Jabbour D., Keita B., Nadjo L., Kortz U., Mal S. S. (2005). Electrochem. Commun. 7:841CrossRefGoogle Scholar
  30. 30.
    Mal S. S., Kortz U. (2005). Angew. Chem. Int. Ed. 44:3777CrossRefGoogle Scholar
  31. 31.
    N. N. Greenwood and A. Earnshaw (1997). Chemistry of the Elements, 2nd edn (Butterworth-Heinemann, Oxford, 1997), pp. 1193–2000Google Scholar
  32. 32.
    Walcarius A., Despas C., Bessières J. (1999). Anal. Chim. Acta 385:79CrossRefGoogle Scholar
  33. 33.
    Keita B., Abdeljalil E., Nadjo L., Avisse B., Contant R., Canny J., Richet M. (2000). Electrochem. Commun. 2:145CrossRefGoogle Scholar
  34. 34.
    Mbomekalle I. M., Keita B., Nadjo L., Berthet P., Hardcastle K. I., Hill C. L., Anderson T. M. (2003). Inorg. Chem. 42:1163CrossRefGoogle Scholar
  35. 35.
    B. Keita, I. M. Mbomekalle, L. Nadjo, and R. Contant (2002). Eur. J. Inorg. Chem. 473Google Scholar
  36. 36.
    Mbomekalle I. M., Keita B., Nadjo L., Berthet P., Neiwert W. A., Hill C. L., Ritorto M. D., Anderson T. M. (2003). Dalton Trans. 13:2646CrossRefGoogle Scholar
  37. 37.
    Bassil B. S., Kortz U., Tigam A. S., Clemente-Juan J. -M., Kcita B., dc Oliveira P., Nadjo L. (2005). Inorg. Chem. 44: 9360CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Travis M. Anderson
    • 1
  • Xikui Fang
    • 1
  • Israel Martyr Mbomekalle
    • 2
    • 3
  • Bineta Keita
    • 2
  • Louis Nadjo
    • 2
  • Kenneth I. Hardcastle
    • 1
  • Alireza Farsidjani
    • 1
  • Craig L. Hill
    • 1
  1. 1.Department of ChemistryEmory UniversityAtlantaUSA
  2. 2.Laboratoire de Chimie Physique, UMR 8000, CNRSUniversité Paris-SudOrsay CedexFrance
  3. 3.Department of ChemistryCity College of The City University of New YorkNew YorkUSA

Personalised recommendations