Advertisement

Journal of Cluster Science

, Volume 16, Issue 2, pp 217–229 | Cite as

“Dimers of Dimers” of Ruthenium(I): Ru···BRu vs. Ru···BO Axial Interactions

  • Yulia Sevryugina
  • Andrei V. Olenev
  • Marina A. Petrukhina
Article

Two new mixed ligand ruthenium(I) complexes of the composition [Ru2(O2CR)2(CO)5] (where R = (2,4-CF3)2C6H3 (1) and (3,5-CF3)2C6H3 (2)) have been prepared by melt reactions, and both have been fully characterized. Crystals of 1 and 2 have been obtained by gas phase sublimation of crude products at 124 and 150°C, respectively. The X-ray diffraction studies have revealed a tetranuclear ‘dimer of dimers’ core structure in both cases. In 1 two diruthenium(I) units cis-bridged by two carboxylates each are coordinated through the Ru···FO axial interactions at 2.301(2) Å. In contrast, complex 2 shows the direct Ru···FRu bonding of two diruthenium units at 2.9065(9) Å. The Ru–Ru distances within the dinuclear units are 2.6654(7) and 2.6859(8) Å in 1 and 2, respectively.

Keywords

Ruthenium(I) carbonyl bis(trifluoromethyl)benzoate crystal structures dimer of dimers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    (a) J. S. Miller, Extended linear chain compounds (Plenum, New York, 1982). (b) K. I. Arai, Y. Wakui, K. Ohmori, and T. Tokushima (1987). IEEE Trans. Magn. MAG-23, 2245–2247. (c) S.-J. Shieh, X. Hong, S.-M. Peng, and C.-M. Che (1994). J. Chem. Soc., Dalton Trans. 20, 3067–3068. (d) P. Nguyen, P. Gomez-Elipe, and I. Manners (1999). Chem. Rev. 99, 1515–1548. (e) S. Parsons, Z. Pikramenou, G. A. Solan, and R. E. P. Winpenny (2000). J. Cluster Sci. 11, 227–232. (f) S. Myllynen, M. Wasberg, E. Eskelinen, M. Haukka, and T. A. Pakkanen (2001). J. Electroanal. Chem. 506, 115–126. (g) T.-J. Yang, Y.-J. Zhao, and A. J. Freeman (2004). J. Magn. Magn. Mater. 272–276, 1648–1649. (h) Y. Shi, G. T. Yee, G. Wang, and T. Ren (2004). J. Am. Chem. Soc. 126, 10552–10553Google Scholar
  2. 2.
    Bera, J. K., Dunbar, K. R. 2002Angew. Chem. Int. Ed4144534457CrossRefGoogle Scholar
  3. 3.
    (a) T. Murahashi, E. Mochizuki, Y. Kai, and H. Kurosawa (1999). J. Am. Chem. Soc. 121, 10660–10661. (b) T. Murahashi, T. Nagai, Y. Mino, E. Mochizuki, Y. Kai, and H. Kurosawa (2001). J. Am. Chem. Soc. 123, 6927–6928Google Scholar
  4. 4.
    (a) F. A. Cotton, C. A. Murillo, and X. Wang (1999). J. Chem. Soc., Dalton Trans. 3327–3328. (b) F. A. Cotton, C. A. Murillo, L. E. Roy, and H.-C. Zhou (2000). Inorg. Chem. 39, 1743–1747. (c) R. Clerac, F. A. Cotton, L. M. Daniels, K. R. Dunbar, C. A. Murillo, and X. Wang (2001). Inorg. Chem. 40, 1256–1264. (d) J. F. Berry, F. A. Cotton, and C. A. Murillo (2004). Organometallics 23, 2503–2506. (e) J. F. Berry, F. A. Cotton, C. S. Fewox, T. Lu, C. A. Murillo, and X. Wang (2004). Dalton Trans. 2297–2302 and references thereinGoogle Scholar
  5. 5.
    (a) S. M. Peng, C.-C. Wang, Y.-L. Jang, Y.-H. Chen, F.-Y. Li, C.-Y. Mou, and M.-K. Leung (2000). J. Magn. Magn. Mater. 209, 80–83. (b) C.-Y. Yeh, Y.-L. Chiang, G.-H. Lee, and S.-M. Peng (2002). Inorg. Chem. 41, 4096–4098. (c) T.-B. Tsao, G.-H. Lee, C.-Y. Yeh, and S.-M. Peng (2003). Dalton Trans. 1465–1471. (d) S.-Y. Lin, I.-W. P. Chen, C.-H. Chen, M.-H. Hsieh, C.-Y. Yeh, T.-W. Lin, Y.-H. Chen, and S.-M. Peng (2004). J. Phys. Chem. B 108, 959–964Google Scholar
  6. 6.
    Matthews, C. J., Onions, S. T., Morata, G., Davis, L. J., Heath, S. L., Price, D. J. 2003Angew. Chem. Int. Ed4231663169CrossRefGoogle Scholar
  7. 7.
    (a) G. Aromi, P. C. Berzal, P. Gamez, O. Roubeau, H. Kooijman, A. L. Spek, W. L. Driessen, and J. Reedijk (2001). Angew. Chem. Int. Ed. 40, 3444–3446. (b) G. Aromi, P. Gamez, O. Roubeau, H. Kooijman, A. L. Spek, W. L. Driessen, and J. Reedijk (2002). Angew. Chem. Int. Ed. 41, 1168–1170Google Scholar
  8. 8.
    (a) K. Mashima, A. Fukumoto, H. Nakano, Y. Kaneda, K. Tani, and A. Nakamura (1998). J. Am. Chem. Soc. 120, 12151–12152. (b) T. Rüffer, M. Ohashi, A. Shima, H. Mizomoto, Y. Kaneda, and K. Mashima (2004). J. Am. Chem. Soc. 126, 12244–12245Google Scholar
  9. 9.
    Zhang, T., Drouin, M., Harvey, P. D. 1999Inorg. Chem3813051315CrossRefPubMedGoogle Scholar
  10. 10.
    Sigal, I. S., Mann, K. R., Gray, H. B. 1980J. Am. Chem. Soc10272527256CrossRefGoogle Scholar
  11. 11.
    Mann, K. R., DiPierro, M. J., Gill, T. P. 1980J. Am. Chem. Soc10239653967CrossRefGoogle Scholar
  12. 12.
    (a) C. Tejel, M. A. Ciriano, J. A. Lopez, F. J. Lahoz, and L. A. Oro (1998). Angew. Chem. Int. Ed. 37, 1542–1545. (b) C. Tejel, M. A. Ciriano, and L. A. Oro (1999). Chem. Eur. J. 5, 1131–1135. (c) C. Tejel, M. A. Ciriano, B. E. Villarroya, R. Gelpi, J. A. Lopez, F. J. Lahoz, and L. A. Oro (2001). Angew. Chem. Int. Ed. 40, 4084–4086. (d) C. Tejel, M. A. Ciriano, B. E. Villarroya, J. A. Lopez, F. J. Lahoz, and L. A. Oro (2003). Angew. Chem. Int. Ed. 42, 529–532Google Scholar
  13. 13.
    Prater, M. E., Pence, L. E., Clerac, R., Finniss, G. M., Campana, C., Auban-Senzier, P., Jerome, D., Canadell, E., Dunbar, K. R. 1999J. Am. Chem. Soc12180058016CrossRefGoogle Scholar
  14. 14.
    Heyduk, A. F., Krodel, D. J., Meyer, E. E., Nocera, D. G. 2002Inorg. Chem41634636CrossRefPubMedGoogle Scholar
  15. 15.
    (a) F. P. Pruchnik, P. Jakimowicz, Z. Ciunik, K. Stanislawek, L. A. Oro, C. Tejel, and M. A. Ciriano (2001). Inorg. Chem. Commun. 4, 19–22. (b) F. P. Pruchnik, P. Jakimowicz, and Z. Ciunik (2001). Inorg. Chem. Commun. 4, 726–729Google Scholar
  16. 16.
    Cotton, F. A., Dikarev, E. V., Petrukhina, M. A. 2000J. Organomet. Chem596130135CrossRefGoogle Scholar
  17. 17.
    F. A. Cotton, E. V. Dikarev, and M. A. Petrukhina (2000). J. Chem. Soc., Dalton Trans. 4241–4243Google Scholar
  18. 18.
    Grushin, V. V., Marshall, W. J., Thorn, D. L. 2001Adv. Synth. Catal343161165CrossRefGoogle Scholar
  19. 19.
    Petrukhina, M. A., Sevryugina, Y., Andreini, K. W. 2004J. Cluster Sci15451467CrossRefGoogle Scholar
  20. 20.
    [Ru2(O2C(3,5-CF3)2C6H3)2(CO)6]: Crystal data: monoclinic, P21/c, a=7.6427(4) Å, b=22.5930(11) Å, c=16.2947(8) Å, β=98.2260(10)°, d=2.110 g·cm−3, μ=1.221 mm−1, R1 (I > 2σ (I)): 0.0235, wR2 (I > 2 σ (I)): 0.0588, R1 (all data): 0.0245, wR2 (all data): 0.0596, quality-of-fit on F2: 1.062, data/restraints/parameters: 6545 / 36 / 475. CCDC No. 253546Google Scholar
  21. 21.
    Bruker (2001). SAINT. Version 6.02 (Bruker AXS, Madison, WI, USA)Google Scholar
  22. 22.
    Bruker (1999). SADABS (Bruker AXS, Madison, WI, USA)Google Scholar
  23. 23.
    Bruker (2001). SHELXTL. Version 6.10 (Bruker AXS, Madison, WI, USA)Google Scholar
  24. 24.
    (a) M. Bianchi, P. Frediani, M. Nardelli, and G. Pelizzi (1981). Acta Cryst. A 37, C236–C237. (b) M. Rotem, Y. Shvo, I. Goldberg, and U. Shmueli (1984). Organometallics 3, 1758–1759. (c) M. Rotem, I. Goldberg, U. Shmueli, and Y. Shvo (1986). J. Organomet. Chem. 314, 185–212. (d) J. H. Reibenspies, B. Fontal, and D. Darensbourg (1993). Acta Cryst. C 49, 1619–1621Google Scholar
  25. 25.
    Spohn, M., Strähle, J. 1987Z. Kristallogr179205206Google Scholar
  26. 26.
    Spohn, M., Vogt, T., Strähle, J. 1986Z. Naturforsch41b13731380Google Scholar
  27. 27.
    (a) F. A. Cotton, and R. A. Walton, Multiple bonds between metal atoms (John Wiley & Sons, New York, 1982). (b) M. P. Doyle and T. Ren (2001). Prog. Inorg. Chem. 49, 113–168. (c) M. A. S. Aquino (2004). Coord. Chem. Rev. 248, 1025–1045Google Scholar
  28. 28.
    (a) H. Schumann, J. Opitz, and J. Pickardt (1977). J. Organomet. Chem. 128, 253–264. (b) T. A. Bright, R. A. Jones, and C. M. Nunn (1988). J. Coord. Chem. 18, 361–367. (c) K.-B. Shiu, S.-M. Peng, and M.-C. Cheng (1993). J. Organomet. Chem. 452, 143–149. (d) U. Matteoli, G. Menchi, M. Bianchi, F. Piacenti, S. Ianelli, and M. Nardelli (1995). J. Organomet. Chem. 498, 177–186. (e) K. Panneerselvam, T.-H. Lu, C.-H. Huang, S.-F. Tung, and K-B. Shiu (1997). Acta Cryst. C 53, 1782–1784. (f) J. S. Field, R. J. Haines, and C. J. Parry (1997). J. Chem. Soc. Dalton Trans., 2843–2848. (g) M. I. Bruce, B. W. Skelton, A. H. White, and N. N. Zaitseva (1999). Aust. J. Chem. 52, 621–623. (h) L. Xu and Y. Sasaki (1999). J. Organomet. Chem. 585, 246–252. (i) C. M. Kepert, G. B. Deacon, L. Spiccia, G. D. Fallon, B. W. Skelton, and A. H. White (2000). J. Chem. Soc., Dalton Trans. 2867–2873. (j) G. B. Deacon, P. Pearson, B. W. Skelton, L. Spiccia, and A. H. White (2003). Acta Cryst. C 59, m537–m539. (k) C. M. Kepert, G. B. Deacon, and L. Spiccia (2003). Inorg. Chim. Acta 355, 213–222Google Scholar
  29. 29.
    N. Masciocchi, M. Moret, P. Cairati, F. Ragaini, and A. Sironi (1993). J. Chem. Soc., Dalton Trans. 471–475Google Scholar
  30. 30.
    Cook, N., Smart, L. E., Woodward, P., Cotton, J. D. 1979J. Chem. Soc., Dalton Trans610321035Google Scholar
  31. 31.
    (a) N. Masciocchi, A. Sironi, S. Chardon-Noblat, and A. Deronzier (2002). Organometallics 21, 4009–4012. (b) F. Hartl, T. Mahabiersing, S. Chardon-Noblat, P. Da Costa, and A. Deronzier (2004). Inorg. Chem. 43, 7250–7258Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yulia Sevryugina
    • 1
  • Andrei V. Olenev
    • 2
  • Marina A. Petrukhina
    • 1
  1. 1.Department of Chemistry, University at AlbanyState University of New YorkAlbanyUSA
  2. 2.Department of Chemistry Moscow State UniversityMoscowRussia

Personalised recommendations