Advertisement

Journal of Cluster Science

, Volume 16, Issue 4, pp 523–536 | Cite as

A Room-Temperature and Microwave Synthesis of M-Doped ZnO (M=Co, Cr, Fe, Mn & Ni)

  • G. Glaspell
  • P. Dutta
  • A. Manivannan
Article

Abstract

A room temperature and microwave method for the preparation M-Doped ZnO, where M=Co, Cr, Fe, Mn & Ni, is described. X-ray diffraction of the synthesized samples shows a single phase ZnO structure without any indication of the dopant. Magnetic studies of the as prepared samples show it to be paramagnetic. However, hydrogenation of particular samples at 573 K for 6 h resulted in transforming the samples to a room temperature ferromagnet.

Keywords

Microwave ZnO magnetism. 

References

  1. 1.
    Hingorani S, Pillai V, Kumar P, Multani M.S., Shah D.O. (1993). Materials Res. Bull. 28: 1303CrossRefGoogle Scholar
  2. 2.
    Lin H.M., Tzeng S.J., Hsiau P.J., Tsai W.L. (1998). Nanostruct. Mater. 10: 465CrossRefGoogle Scholar
  3. 3.
    Zhao X, Zhang S.C, Li C., Zheng B.,Gu H.(1997). Mater. Synth. Process. 5: 227Google Scholar
  4. 4.
    Matsumoto Y., Murakami M., Shono T., Hasegawa T., Fukumura T., Kawasaki M., Ahmet P.,Chikyow T., Koshihara S., Koinuma H.(2001). Science 291: 854PubMedCrossRefGoogle Scholar
  5. 5.
    Chambers S.A.,Thevuthasan S., Farrow R.F.C., Marks R.F., Thiele J.W., Folks L.,Samant M.G., Kellock A.J., Ruzycki N., Ederer D.L., Diebold U. (2001). Appl. Phys. Lett. 79: 3467CrossRefGoogle Scholar
  6. 6.
    Matsumoto Y.,Takahashi R., Murakami M., Koida T., Fan X.J., Hasegawa T., Fukumura T., Kawasaki M., Koshihara S.Y, Koinuma H.(2001). Jpn. J. Appl. Phys. Part 2 40: L1205Google Scholar
  7. 7.
    Park W.K., Ortega-Hertogs R.J., Moodera J., Punnoose A., Seehra M.S. (2002). J. Appl. Phys. 91: 8093CrossRefGoogle Scholar
  8. 8.
    Stampe P.A.,.Kennedy R.J., Xin Y., Parker J.S.(2003). J. Appl. Phys. 93: 7864CrossRefGoogle Scholar
  9. 9.
    Punnoose A., Seehra M.S., Park W.K., Moodera J.S.(2003). J. Appl. Phys. 93: 7867CrossRefGoogle Scholar
  10. 10.
    Kim D.H., Yang J.S., Lee K.W., Bu S.D., Kim D.W., Noh T.W., Oh S.J., Kim Y.W., Chung J.S.,Tanaka H., Lee H.Y., Kawai T.,Won J.Y., Park S.H., Lee J.C. (2003). J. Appl. Phys. 93: 6125CrossRefGoogle Scholar
  11. 11.
    Rameev B.Z.,Yildiz F.,Tagirov L.R., Aktas B., Park W.K., Moodera J.S. (2003). J. Mag. Mag. Mater. 258–259, 361CrossRefGoogle Scholar
  12. 12.
    Rao K.J., Vaidhyanathan B., Gaguli M., Ramajrishnan P.A.(1999). Chem. Mater. 11: 882CrossRefGoogle Scholar
  13. 13.
    L. Xue-Hong (2001). Chem. Commun. 937.Google Scholar
  14. 14.
    Liang J., Deng Z.X., Jiang X., Li F., Li Y.(2002). Inorg Chem 41: 3602CrossRefPubMedGoogle Scholar
  15. 15.
    Wang H., Jin-Zhong X., Jun-Jie Z., Hong-Yuan C.(2002). J. of Crystal Growth 244: 88CrossRefGoogle Scholar
  16. 16.
    Gallis K., Landry C.(2001). Adv Mater 13(1): 23CrossRefGoogle Scholar
  17. 17.
    Palchik O., Zhu J., Gedankan A.(2000). J. Mater. Chem. 10: 1251CrossRefGoogle Scholar
  18. 18.
    Boxall D.,Lukehart C.(2001). Chem. Mater. 13: 806CrossRefGoogle Scholar
  19. 19.
    Zhu J., Palchik O., Chen S., Gedanken A.(2000). J. Phys. Chem. B. 104: 7344CrossRefGoogle Scholar
  20. 20.
    Tu W.,Liu H.J.(2000). Mater. Chem. 10: 2207CrossRefGoogle Scholar
  21. 21.
    Boxall D., Lukeart C.(2001). Chem. Mater. 13: 891CrossRefGoogle Scholar
  22. 22.
    A. Manivannan, G. Glaspell, L. Riggs, S. Underwood, and M. S. Seehra (2003). Proceedings – Electrochemical Society 2004 27, 129.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of ChemistryWest Virginia UniversityMorgantownUSA
  2. 2.Virginia Commonwealth UniversityRichmondUSA
  3. 3.Department of PhysicsWest Virginia UniversityMorgantownUSA

Personalised recommendations