Infectious Complications Predict Premature CD8+ T-cell Senescence in CD40 Ligand-Deficient Patients

Abstract

Purpose

CD40 ligand (CD40L)-deficient patients display increased susceptibilities to infections that can be mitigated with effective prophylactic strategies including immunoglobulin G (IgG) replacement and prophylactic antibiotics. CD8+ T-cell senescence has been described in CD40L deficiency, but it is unclear if this is an intrinsic feature of the disease or secondary to infectious exposures. To address this question, we assessed CD8+ T-cell senescence and its relationship to clinical histories, including prophylaxis adherence and infections, in CD40L-deficient patients.

Methods

Peripheral CD8+ T-cells from seven CD40L-deficient patients and healthy controls (HCs) were assessed for senescent features using T-cell receptor excision circle (TREC) analysis, flow cytometry, cytometry by time of flight (CyTOF) and in vitro functional determinations including CMV-specific proliferation and cytokine release assays.

Results

Three patients (5, 28, and 34 years old) who were poorly adherent to immunoglobulin G replacement and Pneumocystis jirovecii pneumonia (PJP) prophylaxis and/or experienced multiple childhood pneumonias (patient group 1) had an expansion of effector memory CD8+ T-cells with the senescent phenotype when compared to HCs. Such changes were not observed in the patient group 2 (four patients, 16, 22, 24, and 33 years old) who were life-long adherents to prophylaxis and experienced few infectious complications. CyTOF analysis of CD8+ T-cells from the 5-year-old patient and older adult HCs showed similar expression patterns of senescence-associated molecules.

Conclusions

Our findings support that recurrent infections and non-adherence to prophylaxis promote early CD8+ T-cell senescence in CD40L deficiency. Premature senescence may increase malignant susceptibilities and further exacerbate infectious risk in CD40L-deficient patients.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The authors confirm that the de-identified data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. 1.

    Kawabe T, Matsushima M, Hashimoto N, Imaizumi K, Hasegawa Y. CD40/CD40 ligand interactions in immune responses and pulmonary immunity. Nagoya J Med Sci. 2011;73(3-4):69–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Notarangelo LD, Lanzi G, Peron S, Durandy A. Defects of class-switch recombination. J Allergy Clin Immunol. 2006;117(4):855–64.

    CAS  Article  Google Scholar 

  3. 3.

    Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993;259(5097):990–3.

    CAS  Article  Google Scholar 

  4. 4.

    DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993;361(6412):541–3.

    CAS  Article  Google Scholar 

  5. 5.

    Notarangelo LD, Duse M, Ugazio AG. Immunodeficiency with hyper-IgM (HIM). Immunodefic Rev. 1992;3(2):101–21.

    CAS  PubMed  Google Scholar 

  6. 6.

    Fuleihan R, Ramesh N, Geha RS. Role of CD40-CD40-ligand interaction in Ig-isotype switching. Curr Opin Immunol. 1993;5(6):963–7.

    CAS  Article  Google Scholar 

  7. 7.

    Cabral-Marques O, Ramos RN, Schimke LF, Khan TA, Amaral EP, Barbosa Bomfim CC, et al. Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-gamma. J Allergy Clin Immunol. 2017;139(3):900–12 e7.

    CAS  Article  Google Scholar 

  8. 8.

    Samten B, Thomas EK, Gong J, Barnes PF. Depressed CD40 ligand expression contributes to reduced gamma interferon production in human tuberculosis. Infect Immun. 2000;68(5):3002–6.

    CAS  Article  Google Scholar 

  9. 9.

    Jain A, Atkinson TP, Lipsky PE, Slater JE, Nelson DL, Strober W. Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest. 1999;103(8):1151–8.

    CAS  Article  Google Scholar 

  10. 10.

    Grewal IS, Xu J, Flavell RA. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature. 1995;378(6557):617–20.

    CAS  Article  Google Scholar 

  11. 11.

    Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393(6684):480–3.

    CAS  Article  Google Scholar 

  12. 12.

    Lefrancois L, Olson S, Masopust D. A critical role for CD40-CD40 ligand interactions in amplification of the mucosal CD8 T cell response. J Exp Med. 1999;190(9):1275–84.

    CAS  Article  Google Scholar 

  13. 13.

    Thomsen AR, Nansen A, Christensen JP, Andreasen SO, Marker O. CD40 ligand is pivotal to efficient control of virus replication in mice infected with lymphocytic choriomeningitis virus. J Immunol. 1998;161(9):4583–90.

    CAS  PubMed  Google Scholar 

  14. 14.

    Bachmann MF, Hunziker L, Zinkernagel RM, Storni T, Kopf M. Maintenance of memory CTL responses by T helper cells and CD40-CD40 ligand: antibodies provide the key. Eur J Immunol. 2004;34(2):317–26.

    CAS  Article  Google Scholar 

  15. 15.

    Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H, et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci U S A. 2004;101(15):5610–5.

    CAS  Article  Google Scholar 

  16. 16.

    Kim HR, Hong MS, Dan JM, Kang I. Altered IL-7Ralpha expression with aging and the potential implications of IL-7 therapy on CD8+ T-cell immune responses. Blood. 2006;107(7):2855–62.

    CAS  Article  Google Scholar 

  17. 17.

    Pellegrini M, Calzascia T, Toe JG, Preston SP, Lin AE, Elford AR, et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell. 2011;144(4):601–13.

    CAS  Article  Google Scholar 

  18. 18.

    Park HJ, Shin MS, Kim M, Bilsborrow JB, Mohanty S, Montgomery RR, et al. Transcriptomic analysis of human IL-7 receptor alpha (low) and (high) effector memory CD8(+) T cells reveals an age-associated signature linked to influenza vaccine response in older adults. Aging Cell. 2019;18(4):e12960.

    Article  Google Scholar 

  19. 19.

    Kim JS, Cho BA, Sim JH, Shah K, Woo CM, Lee EB, et al. IL-7Ralphalow memory CD8+ T cells are significantly elevated in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2012;51(9):1587–94.

    CAS  Article  Google Scholar 

  20. 20.

    de la Morena MT, Leonard D, Torgerson TR, Cabral-Marques O, Slatter M, Aghamohammadi A, et al. Long-term outcomes of 176 patients with X-linked hyper-IgM syndrome treated with or without hematopoietic cell transplantation. J Allergy Clin Immunol. 2017;139(4):1282–92.

    Article  Google Scholar 

  21. 21.

    Ferrua F, Galimberti S, Courteille V, Slatter MA, Booth C, Moshous D, et al. Hematopoietic stem cell transplantation for CD40 ligand deficiency: results from an EBMT/ESID-IEWP-SCETIDE-PIDTC study. J Allergy Clin Immunol. 2019;143(6):2238–53.

    CAS  Article  Google Scholar 

  22. 22.

    Lougaris V, Lanzi G, Baronio M, Gazzurelli L, Vairo D, Lorenzini T, et al. Progressive severe B cell and NK cell deficiency with T cell senescence in adult CD40L deficiency. Clin Immunol. 2018;190:11–4.

    CAS  Article  Google Scholar 

  23. 23.

    Shin MS, Yim K, Moon K, Park HJ, Mohanty S, Kim JW, et al. Dissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry. Clin Immunol. 2019;200:24–30.

    CAS  Article  Google Scholar 

  24. 24.

    Shin MS, Lee JS, Lee N, Lee WW, Kim SH, Kang I. Maintenance of CMV-specific CD8+ T cell responses and the relationship of IL-27 to IFN-gamma levels with aging. Cytokine. 2013;61(2):485–90.

    CAS  Article  Google Scholar 

  25. 25.

    Lee N, You S, Shin MS, Lee WW, Kang KS, Kim SH, et al. IL-6 receptor alpha defines effector memory CD8+ T cells producing Th2 cytokines and expanding in asthma. Am J Respir Crit Care Med. 2014;190(12):1383–94.

    Article  Google Scholar 

  26. 26.

    Kim HR, Hong MS, Dan JM, Kang I. Altered IL-7R{alpha} expression with aging and the potential implications of IL-7 therapy on CD8+ T-cell immune responses. Blood. 2006;107(7):2855–62.

    CAS  Article  Google Scholar 

  27. 27.

    Kim HR, Hwang KA, Park SH, Kang I. IL-7 and IL-15: biology and roles in T-cell immunity in health and disease. Crit Rev Immunol. 2008;28(4):325–39.

    Article  Google Scholar 

  28. 28.

    Akbar AN, Henson SM. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol. 2011;11(4):289–95.

    CAS  Article  Google Scholar 

  29. 29.

    Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003;101(7):2711–20.

    CAS  Article  Google Scholar 

  30. 30.

    Weng NP, Akbar AN, Goronzy J. CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol. 2009;30(7):306–12.

    CAS  Article  Google Scholar 

  31. 31.

    Johnson CB, Riesenberg BP, May BR, Gilreath SC, Li G, Staveley-O’Carroll KF, et al. Effector CD8+ T-cell engraftment and antitumor immunity in lymphodepleted hosts is IL7Ralpha dependent. Cancer Immunol Res. 2015;3(12):1364–74.

    CAS  Article  Google Scholar 

  32. 32.

    Xu W, Larbi A. Markers of T cell senescence in humans. Int J Mol Sci. 2017;18(8).

  33. 33.

    Geginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003;101(11):4260–6.

    CAS  Article  Google Scholar 

  34. 34.

    Ballow M. Mechanisms of immune regulation by IVIG. Curr Opin Allergy Clin Immunol. 2014;14(6):509–15.

    CAS  Article  Google Scholar 

  35. 35.

    Paquin-Proulx D, Santos BA, Carvalho KI, Toledo-Barros M, Barreto de Oliveira AK, Kokron CM, et al. IVIg immune reconstitution treatment alleviates the state of persistent immune activation and suppressed CD4 T cell counts in CVID. PLoS One. 2013;8(10):e75199.

    CAS  Article  Google Scholar 

  36. 36.

    Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nature Immunology. 2014;15(1):88–97.

    CAS  Article  Google Scholar 

  37. 37.

    Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597–606 e4.

    CAS  Article  Google Scholar 

  38. 38.

    Edwards ESJ, Bier J, Cole TS, Wong M, Hsu P, Berglund LJ, et al. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol. 2019;143(1):276–91 e6.

    CAS  Article  Google Scholar 

  39. 39.

    Randall KL, Chan SS, Ma CS, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208(11):2305–20.

    CAS  Article  Google Scholar 

  40. 40.

    Ruiz-Garcia R, Rodriguez-Vigil C, Marco FM, Gallego-Bustos F, Castro-Panete MJ, Diez-Alonso L, et al. Acquired senescent T-cell phenotype correlates with clinical severity in GATA binding protein 2-deficient patients. Front Immunol. 2017;8:802.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by grants from the National Institutes of Health (1R01AG056728 and R01AG055362 to IK and K23AI115001 to NR).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Insoo Kang.

Ethics declarations

Ethical Approval

This study was approved by the Institutional Review Boards of all participating institutions with appropriate consents (see subjects in the “Methods” section).

Consent to Participate

Appropriate consents were obtained and all authors agree to publish (see subjects in the “Methods” section).

Consent to Publish

Appropriate consents were obtained and all authors agree to publish (see subjects in the “Methods” section).

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PPTX 135 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, J.J., Catanzaro, J., Yonkof, J.R. et al. Infectious Complications Predict Premature CD8+ T-cell Senescence in CD40 Ligand-Deficient Patients. J Clin Immunol (2021). https://doi.org/10.1007/s10875-021-00968-x

Download citation

Keywords

  • X-linked CD40 ligand deficiency
  • CD8+ T-cell senescence
  • combined immunodeficiency
  • class switching recombination defect
  • immunoglobulin replacement therapy
  • Pneumocystis jirovecii pneumonia (PJP) prophylactic antibiotics