The Phytopathogenic Fungus Pallidocercospora crystallina-Caused Localized Subcutaneous Phaeohyphomycosis in a Patient with a Homozygous Missense CARD9 Mutation

Abstract

Purpose

In the past decade, an increasing number of otherwise healthy individuals suffered from invasive fungal infections due to inherited CARD9 mutations. Herein, we present a patient with a homozygous CARD9 mutation who was suffering from localized subcutaneous phaeohyphomycosis caused by the phytopathogenic fungus Pallidocercospora crystallina which has not been reported to cause infections in humans.

Methods

The medical history of our patient was collected. P. crystallina was isolated from the biopsied tissue. To characterize this novel pathogen, the morphology was analyzed, whole-genome sequencing was performed, and the in vivo immune response was explored in mice. Whole-exome sequencing was carried out with samples from the patient’s family. Finally, the expression and function of mutated CARD9 were investigated.

Results

A dark red plaque was on the patient’s left cheek for 16 years and was diagnosed as phaeohyphomycosis due to a P. crystallina infection. Whole-genome sequencing suggested that that this strain had a lower pathogenicity. The in vivo immune response in immunocompetent or immunocompromised mice indicated that P. crystallina could be eradicated within a few weeks. Whole-exome sequencing revealed ahomozygous missense mutation in CARD9 (c.1118G>C p.R373P). The mRNA and protein expression levels were similar among cells carrying homozygous (C/C), heterozygous (G/C), and wild-type (G/G) CARD9 alleles. Compared to PBMCs or neutrophils with heterozygous or wild-type CARD9 alleles, however, PBMCs or neutrophils with homozygous CARD9 alleles showed impaired anti-P. crystallina effects.

Conclusion

Localized subcutaneous phaeohyphomycosis caused by P. crystallina was reported in a patient with a homozygous CARD9 mutation. Physicians should be aware of the possibility of a CARD9 mutation in seemingly healthy patients with unexplainable phaeohyphomycosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Chowdhary A, Perfect J, de Hoog GS. Black molds and melanized yeasts pathogenic to humans. Csh Perspect Med. 2015;5(8):a19570.

    Google Scholar 

  2. 2.

    Skupsky H, Junkins-Hopkins J. Counterfeit pennies: distinguishing chromoblastomycosis from phaeohyphomycotic infections. Am J Dermatopathol. 2017;39(6):485–7.

    Article  PubMed  Google Scholar 

  3. 3.

    Kollipara R, Peranteau AJ, Nawas ZY, Tong Y, Woc-Colburn L, Yan AC, et al. Emerging infectious diseases with cutaneous manifestations. J Am Acad Dermatol. 2016;75(1):19–30.

    Article  PubMed  Google Scholar 

  4. 4.

    Revankar SG, Baddley JW, Chen SCA, Kauffman CA, Slavin M, Vazquez JA, et al. A Mycoses Study Group international prospective study of phaeohyphomycosis: an analysis of 99 proven/probable cases. Open Forum Infect Di. 2017;4(4).

  5. 5.

    Isa-Isa R, García C, Isa M, Arenas R. Subcutaneous phaeohyphomycosis (mycotic cyst). Clin Dermatol. 2012;30(4):425–31.

    Article  PubMed  Google Scholar 

  6. 6.

    Wong EH, Revankar SG. Dematiaceous molds. Infect Dis Clin N Am. 2016;30(1):165–78.

    Article  Google Scholar 

  7. 7.

    Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJ, Shin HD, et al. Phylogenetic lineages in Pseudocercospora. Stud Mycol. 2013;75(1):37–114.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Huang F, Groenewald JZ, Zhu L, Crous PW, Li H. Cercosporoid diseases of Citrus. Mycologia. 2016;107(6):1151–71.

    Article  CAS  Google Scholar 

  9. 9.

    Tang J, Lin G, Langdon WY, Tao L, Zhang J. Regulation of C-type lectin receptor-mediated antifungal immunity. Front Immunol. 2018;9.

  10. 10.

    Wang X, Zhang R, Wu W, Song Y, Wan Z, Han W, et al. Impaired specific antifungal immunity in CARD9-deficient patients with phaeohyphomycosis. J Invest Dermatol. 2018;138(3):607–17.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Wang X, Wang W, Lin Z, Wang X, Li T, Yu J, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133(3):905–8.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Glocker E, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U, et al. A Homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;21(4):372.

    Google Scholar 

  13. 13.

    Gavino C, Mellinghoff S, Cornely OA, Landekic M, Le C, Langelier M, et al. Novel bi-allelic splice mutations in CARD9 causing adult-onset Candida endophthalmitis. Mycoses. 2018;61(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Sari S, Dalgic B, Muehlenbachs A, DeLeon-Carnes M, Goldsmith CS, Ekinci O, et al. Prototheca zopfii colitis in inherited CARD9 deficiency. J Infect Dis. 2018;218(3):485–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Corvilain E, Casanova J, Puel A. Inherited CARD9 deficiency: invasive disease caused by ascomycete fungi in previously healthy children and adults. J Clin Immunol. 2018;38(6):656–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1(17).

  17. 17.

    Yan XX, Yu CP, Fu XA, Bao FF, Du DH, Wang C, et al. CARD9 mutation linked to Corynespora cassiicola infection in a Chinese patient. Brit J Dermatol. 2016;174(1):176–9.

    Article  CAS  Google Scholar 

  18. 18.

    Arango-Franco CA, Moncada-Vélez M, Beltrán CP, Berrío I, Mogollón C, Restrepo A, et al. Early-onset invasive infection due to Corynespora cassiicola associated with compound heterozygous CARD9 mutations in a Colombian patient. J Clin Immunol. 2018;38(7):794–803.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res. 2015;43(D1):D645–55.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Miyajima Y, Satoh K, Uchida T, Yamada T, Abe M, Watanabe S, et al. Rapid real-time diagnostic PCR for Trichophyton rubrum and Trichophyton mentagrophytes in patients with tinea unguium and tinea pedis using specific fluorescent probes. J Dermatol Sci. 2013;69(3):229–35.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Gazendam RP, van de Geer A, Roos D, van den Berg TK, Kuijpers TW. How neutrophils kill fungi. Immunol Rev. 2016;273(1):299–311.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369(18):1704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Rosentul DC, Plantinga TS, Oosting M, Scott WK, Velez Edwards DR, Smith PB, et al. Genetic variation in the dectin-1/CARD9 recognition pathway and susceptibility to candidemia. J Infect Dis. 2011;204(7):1138–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Revankar SG, Sutton DA. Melanized fungi in human disease. Clin Microbiol Rev. 2010;23(4):884–928.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Santos DWCL, Padovan ACB, Melo ASA, Gonçalves SS, Azevedo VR, Ogawa MM, et al. Molecular identification of melanised non-sporulating moulds: a useful tool for studying the epidemiology of phaeohyphomycosis. Mycopathologia. 2013;175(5–6):445–54.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Harutyunyan S, Muggia L, Grube M. Black fungi in lichens from seasonally arid habitats. Stud Mycol. 2008;61:83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. Plos Pathog. 2015;11(12):e1005293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Drewniak A, Gazendam RP, Tool AT, van Houdt M, Jansen MH, van Hamme JL, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121(13):2385–92.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Liang P, Wang X, Wang R, Wan Z, Han W, Li R. CARD9 deficiencies linked to impaired neutrophil functions against Phialophora verrucosa. Mycopathologia. 2015;179(5–6):347–57.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Drummond RA, Swamydas M, Oikonomou V, Zhai B, Dambuza IM, Schaefer BC, et al. CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat Immunol. 2019;20(5):559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Johnson CJ, Davis JM, Huttenlocher A, Kernien JF, Nett JE. Emerging fungal pathogen Candida auris evades neutrophil attack. Mbio. 2018;9(4).

  32. 32.

    Fites JS, Gui M, Kernien JF, Negoro P, Dagher Z, Sykes DB, et al. An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections. Plos Pathog. 2018;14(5):e1007073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Drummond RA, Franco LM, Lionakis MS. Human CARD9: a critical molecule of fungal immune surveillance. Front Immunol. 2018;9.

  34. 34.

    Gavino C, Hamel N, Zeng JB, Legault C, Guiot MC, Chankowsky J, et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2016;137(4):1178–88.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, Legault C, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59(1):81–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Drummond RA, Zahra FT, Natarajan M, Swamydas M, Hsu AP, Wheat LJ, et al. GM-CSF therapy in human caspase recruitment domain–containing protein 9 deficiency. J Allergy Clin Immunol. 2018;142(4):1334–8.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Rosentul DC, Delsing CE, Jaeger M, Plantinga TS, Oosting M, Costantini I, et al. Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Front Microbiol. 2014;5.

  38. 38.

    Xu X, Xu J, Zheng G, Lu H, Duan J, Rui W, et al. CARD9S12N facilitates the production of IL-5 by alveolar macrophages for the induction of type 2 immune responses. Nat Immunol. 2018;19(6):547–60.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Behera B, Thomas E, Kumari R, Thappa DM, Jinkala S. Polymorphous presentation of subcutaneous phaeohyphomycosis: a rare occurrence. Int J Dermatol. 2018;57(2):e1–3.

    Article  PubMed  Google Scholar 

  40. 40.

    Zhou YB, Chen P, Sun TT, Wang XJ, Li DM. Acne-like subcutaneous Phaeohyphomycosis caused by Cladosporium cladosporioides: a rare case report and review of published literatures. Mycopathologia. 2016;181(7–8):567–73.

    Article  PubMed  Google Scholar 

  41. 41.

    Yang H, Cai Q, Gao Z, Lv G, Shen Y, Liu W, et al. Subcutaneous phaeohyphomycosis caused by Exophiala oligosperma in an immunocompetent host: case report and literature review. Mycopathologia. 2018.

  42. 42.

    Mijiti J, Pan B, de Hoog S, Horie Y, Matsuzawa T, Yilifan Y, et al. Severe chromoblastomycosis-like cutaneous infection caused by Chrysosporium keratinophilum. Front Microbiol. 2017;8.

Download references

Acknowledgments

We thank the patient and her family, for participating in this study. We thank for the Chigene (Beijing) Translational Medical Research Center Co. Ltd. for the technical support of the whole-exome sequencing analysis.

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers 81371735 and 81672691) and the National Natural Science Foundation of Shaanxi Province (Grant number 21044091).

Author information

Affiliations

Authors

Contributions

Y.G., Z.Z, J.G., C.Z., X.Z., E.D., W.L., and H.Q. conducted the research, analyzed, and interpreted data. G.W., C.M., and M.F. designed the research studies. Y.G., Z.Z., and J.G. drafted the manuscript and E.D., W.L., H.Q., G.W., C.M., and M.F. critically revised the manuscript.

Corresponding author

Correspondence to Meng Fu.

Ethics declarations

This work was performed according to rules and regulations concerning the use of human materials from the patient, her parents, her son, and three healthy unrelated volunteers with written informed consent. The study was approved by the Clinical Research Ethics Committee of the Xijing Hospital in accordance with the institution’s guidelines. All experiments were carried out with adherence to the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 237 kb)

ESM 2

(PDF 792 kb)

ESM 3

(XLS 22320 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhu, Z., Gao, J. et al. The Phytopathogenic Fungus Pallidocercospora crystallina-Caused Localized Subcutaneous Phaeohyphomycosis in a Patient with a Homozygous Missense CARD9 Mutation. J Clin Immunol 39, 713–725 (2019). https://doi.org/10.1007/s10875-019-00679-4

Download citation

Keywords

  • Phaeohyphomycosis
  • Pallidocercospora crystallina
  • CARD9
  • Homozygous missense mutations
  • Primary immunodeficiency
  • Inborn errors of immunity