Journal of Clinical Immunology

, Volume 34, Supplement 1, pp 105–111 | Cite as

The Node of Ranvier in Multifocal Motor Neuropathy



Multifocal motor neuropathy affects myelinated motor axons in limb nerves at multifocal sites. It is characterized by weakness and muscle atrophy, motor conduction block, and antibodies against ganglioside GM1 which is expressed on the axolemma of nodes of Ranvier and perinodal Schwann cells. Treatment by regular IVIg courses results in temporary improvement but cannot prevent slowly progressing weakness due to axonal degeneration. This review discusses possible mechanisms of conduction block and the reasons why motor axons are selectively affected in this disorder.


Node of Ranvier ion-channels demyelination electrophysiology Na-channels anti-GM1 


  1. 1.
    Vlam L, Van der Pol L, Cats EA, Straver DC, Piepers S, Franssen H, et al. Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol. 2012;8:48–58.CrossRefGoogle Scholar
  2. 2.
    Van den Berg-Vos RM, Franssen H, Wokke JHJ, Van den Berg LH. Multifocal motor neuropathy: long-term clinical and electrophysiological assessment of intravenous immunoglobulin maintenance treatment. Brain. 2002;125:1875–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Asseldonk JTH, Van den Berg LH, Van den Berg-Vos RM, Wieneke GH, Franssen H. Demyelination and axonal loss in multifocal motor neuropathy: distribution and relation to weakness. Brain. 2003;126:186–98.PubMedCrossRefGoogle Scholar
  4. 4.
    Kaji R. Physiology of conduction block in multifocal motor neuropathy and other demyelinating neuropathies. Muscle Nerve. 2003;27:285–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Van den Berg-Vos RM, Franssen H, Wokke JHJ, Van Es HW, Van den Berg LH. Multifocal motor neuropathy: diagnostic criteria that predict the response to immunoglobulin treatment. Ann Neurol. 2000;48:919–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Van Asseldonk JT, Van den Berg LH, Kalmijn S, et al. Axon loss is an important determinant of weakness in MMN. J Neurol Neurosurg Psychiatry. 2006;77:743–7.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Franssen H, Straver DC. Pathophysiology of immune-mediated demyelinating neuropathies - part I: Neuroscience. Muscle Nerve. 2013;48:851–64 Part II: Neurology. Muscle Nerve 2014;49:4-20.Google Scholar
  8. 8.
    Reid G, Scholz A, Bostock H, Vogel W. Human axons contain at least five types of voltage-dependent potassium channel. J Physiol. 1999;518:681–96.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Burke D, Kiernan MC, Bostock H. Excitability of human axons. Clin Neurophysiol. 2001;112:1575–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Kiernan MC, Bostock H. Effects of membrane polarization and ischaemia on the excitability properties of human motor axons. Brain. 2000;123:2542–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Straver 2013. Mechanisms of conduction block in immune-mediated polyneuropathies. Thesis, Brain Center Rudolf Magnus, University Utrecht 2013.Google Scholar
  12. 12.
    Kaji R, Oka N, Tsuji T, Mezaki T, Nishio T, Akiguchi I, et al. Pathological findings at the site of conduction block in multifocal motor neuropathy. Ann Neurol. 1993;33:152–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor BV, Dyck PJ, Engelstad J, Gruener G, Grant I, Dyck PJ. Multifocal motor neuropathy: pathologic alterations at the site of conduction block. J Neuropathol Exp Neurol. 2004;63:129–37.PubMedGoogle Scholar
  14. 14.
    Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci. 2006;7:932–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Rasminsky M. The effects of temperature on conduction in demyelinated single nerve fibers. Arch Neurol. 1973;28:287–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwarz JR, Eikhof G. Na currents and action potentials in rat myelinated nerve fibres at 20 and 37 degrees C. Pflugers Arch. 1987;409:569–77.PubMedCrossRefGoogle Scholar
  17. 17.
    Frankenhaeuser B, Moore LE. The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J Physiol. 1963;169:431–7.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Straver DC, Van Asseldonk JT, Notermans NC. Cold paresis in multifocal motor neuropathy. J Neurol. 2011;258:212–7.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Franssen H, Gebbink TA, Wokke JH. Is cold paresis related to axonal depolarization? J Peripher Nerv Syst. 2010;15:227–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Priori A, Bossi B, Ardolino G, Bertolasi L, Carpo M, Nobile-Orazio E, et al. Pathophysiological heterogeneity of conduction blocks in multifocal motor neuropathy. Brain. 2005;128:1642–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Rack PM, Fox JE. The effects of cold on a partially denervated muscle. J Neurol Neurosurg Psychiatry. 1987;50:460–4.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kiernan MC, Guglielmi JM, Kaji R, Murray NM, Bostock H. Evidence for axonal membrane hyperpolarization in multifocal motor neuropathy with conduction block. Brain. 2002;125:664–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Waxman SG, Black JA, Ransom BR, Stys PK. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Res. 1994;644:197–204.PubMedCrossRefGoogle Scholar
  24. 24.
    McGonigal R, Rowan EG, Greenshields KN, Halstead SK, Humphreys PD, Rother RP, et al. Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain. 2010;133:1944–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Santoro M, Uncini A, Corbo M, Staugaitis SM, Thomas FP, Hays AP, et al. Experimental conduction block induced by serum from a patient with anti-GM1 antibodies. Ann Neurol. 1992;31:385–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Takigawa T, Yasuda H, Kikkawa R, Shigeta Y, Saida T, Kitasato H. Antibodies against GM1 ganglioside affect K + and Na + currents in isolated rat myelinated nerve fibers. Ann Neurol. 1995;37:436–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K, et al. Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci. 2007;27:3956–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Susuki K, Yuki N, Schafer DP, Hirata K, Zhang G, Funakoshi K, et al. Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies. Exp Neurol. 2012;233:534–42.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hirota N, Kaji R, Bostock H, Shindo K, Kawasaki T, Mizutani K, et al. The physiological effect of anti-GM1 antibodies on saltatory conduction and transmembrane currents in single motor axons. Brain. 1997;120:2159–69.PubMedCrossRefGoogle Scholar
  30. 30.
    Bostock H, Rothwell JC. Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol. 1997;498:277–94.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Priori A, Cinnante C, Pesenti A, Carpo M, Cappellari A, Nobile-Orazio E, et al. Distinctive abnormalities of motor axonal strength-duration properties in multifocal motor neuropathy and in motor neurone disease. Brain. 2002;125:2481–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Boërio D, Creange A, Hogrel JY, Gueguen A, Bertrand D, Lefaucheur JP. Nerve excitability changes after intravenous immunoglobulin infusions in multifocal motor neuropathy and chronic inflammatory demyelinating neuropathy. J Neurol Sci. 2010;292:63–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Sunderland S. Nerves and nerve injuries. Edinburgh: Churchill Livingstone; 1978.Google Scholar
  34. 34.
    Delmont E, Benaïm C, Launay M. Do patients having a decrease in SNAP amplitude during the course of MMN present with a different condition? J Neurol. 2009;256:1876–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Castro J, Negredo P, Avendano C. Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res. 2008;1190:65–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Ogawa-Goto K, Funamoto N, Ohta Y, Abe T, Nagashima K. Myelin gangliosides of human peripheral nervous system: an enrichment of GM1 in the motor nerve myelin isolated from cauda equina. J Neurochem. 1992;59:1844–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Gong Y, Tagawa Y, Lunn MP, Laroy W, Heffer-Lauc M, Li CY, et al. Localization of major gangliosides in the PNS: implications for immune neuropathies. Brain. 2002;125:2491–506.PubMedCrossRefGoogle Scholar
  38. 38.
    Ogawa-Goto K, Abe T. Gangliosides and glycosphingolipids of peripheral nervous system myelins–a minireview. Neurochem Res. 1998;23:305–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Ogawa-Goto K, Funamoto N, Abe T, Nagashima K. Different ceramide compositions of gangliosides between human motor and sensory nerves. J Neurochem. 1990;55:1486–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Lin CS, Kuwabara S, Cappelen-Smith C. Responses of human sensory and motor axons to the release of ischaemia and to hyperpolarizing currents. J Physiol. 2002;541:1025–39.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hofmeijer J, Franssen H, Van Schelven LJ, Van Putten MJAM. Why are sensory axons more vulnerable for ischemia than motor axons? Plos One. 2013;8:e67113.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neuromuscular Disorders, Brain Center Rudolf MagnusUniversity Hospital UtrechtUtrechtThe Netherlands

Personalised recommendations