Journal of Clinical Immunology

, Volume 34, Issue 2, pp 171–180 | Cite as

Positive Correlation of STAT1 and miR-146a with Anemia in Patients with Systemic Lupus Erythematosus

  • Paul R. Dominguez-Gutierrez
  • Angela Ceribelli
  • Minoru Satoh
  • Eric S. Sobel
  • Westley H. Reeves
  • Edward K. L. Chan
Original Research



Anemia is one of the most common hematological manifestations in SLE patients, occurring in about 50 % of active cases. STAT1 is a critical signaling molecule required for the production of type-1 interferon (I-IFN), CCL2, and CXCL10, all of which are upregulated in SLE. Overexpression of STAT1 has been described to be involved in anemia in animal models. The aim of this study is to analyze how these components are involved in SLE-associated anemia.


Blood samples were collected from 39 healthy donors and 101 SLE patients fulfilling ACR criteria. Samples were collected from a total of 180 visits (58 patients had 2 or more visits) of which 52 visits included a diagnosis of anemia. Healthy donors had only single visit. Total RNA, isolated from leukocytes, was analyzed by Taqman qPCR. Relative expression levels of I-IFN signature genes, chemokines, and miR-146a were determined by the ΔΔCT method. Results were correlated with clinical data and analyzed by the Wilcoxon/Kruskal-Wallis test and Fisher’s exact test.


Significant increases in IFN score (p < 0.0001), STAT1 (p < 0.0001), miR-146a (p < 0.0005), CCL2 (p = 0.0047), and CXCL10 (p = 0.017), as well as a significant decrease in pri-miR-146a (p = 0.0002), were detected in the anemic SLE patient visits (n = 52) compared to non-anemic SLE visits (n = 128). Regardless of disease activity, lupus nephritis, or race, anemic SLE patients displayed significantly elevated levels of STAT1 and miR-146a compared to non-anemic SLE patients.


STAT1 and miR-146a may be upregulated during inflammation and via proinflammatory cytokines and chemokines in SLE. Prolonged upregulation of STAT1 and miR-146a appears to play an important role in anemia in SLE patients.


Anemia CCL2 CXCL10 miR-146a lupus 



African Americans


Asian Americans


C-C motif chemokine ligand 2


C-X-C motif chemokine 10


European Americans




Type-1 interferon


Interferon receptor


Latino Americans


Lupus nephritis


Multiethnic Americans


Mycophenolate mofetil




Systemic lupus erythematosus


SLE disease activity index


Signal transducers and activators of transcription 1



We thank all the staff at the Division of Rheumatology for collection of blood and clinical information. This work was supported in part by a grant from the Lupus Research Institute and the National Institutes of Health grant Al47859. PRDG was supported by training grant T90/R90 DE007200.


The authors declare that they have no conflicts of interest.

Supplementary material

10875_2013_9973_MOESM1_ESM.pptx (1.6 mb)
ESM 1 (PPTX 1664 kb)


  1. 1.
    Giannouli S, Voulgarelis M, Ziakas PD, Tzioufas AG. Anaemia in systemic lupus erythematosus: from pathophysiology to clinical assessment. Ann Rheum Dis. 2006;65:144–8.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271–6.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    D’Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet. 2007;369:587–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Crow MK. Collaboration, genetic associations, and lupus erythematosus. N Engl J Med. 2008;358:956–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Nikpour M, Dempsey AA, Urowitz MB, Gladman DD, Barnes DA. Association of a gene expression profile from whole blood with disease activity in systemic lupus erythaematosus. Ann Rheum Dis. 2008;67:1069–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Crow MK, Kirou KA, Wohlgemuth J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity. 2003;36:481–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100:2610–5.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Karonitsch T, Feierl E, Steiner CW, Dalwigk K, Korb A, Binder N, et al. Activation of the interferon-gamma signaling pathway in systemic lupus erythematosus peripheral blood mononuclear cells. Arthritis Rheum. 2009;60:1463–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Usacheva A, Smith R, Minshall R, Baida G, Seng S, Croze E, et al. The WD motif-containing protein receptor for activated protein kinase C (RACK1) is required for recruitment and activation of signal transducer and activator of transcription 1 through the type I interferon receptor. J Biol Chem. 2001;276:22948–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Ivashkiv LB. Type I, interferon modulation of cellular responses to cytokines and infectious pathogens: potential role in SLE pathogenesis. Autoimmunity. 2003;36:473–9.PubMedCrossRefGoogle Scholar
  11. 11.
    O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell. 2002;109(Suppl):S121–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Soldevila G, Licona I, Salgado A, Ramirez M, Chavez R, Garcia-Zepeda E. Impaired chemokine-induced migration during T-cell development in the absence of Jak 3. Immunology. 2004;112:191–200.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Bauer JW, Baechler EC, Petri M, Batliwalla FM, Crawford D, Ortmann WA, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 2006;3:e491.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 2009;60:3098–107.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010;411:1570–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Xia M, Sui Z. Recent developments in CCR2 antagonists. Expert Opin Ther Pat. 2009;19:295–303.PubMedCrossRefGoogle Scholar
  17. 17.
    Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol. 2002;168:3195–204.PubMedGoogle Scholar
  18. 18.
    Luster AD, Jhanwar SC, Chaganti RS, Kersey JH, Ravetch JV. Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells. Proc Natl Acad Sci U S A. 1987;84:2868–71.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Nahid MA, Rivera M, Lucas A, Chan EKL, Kesavalu L. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease. Infect Immun. 2011;79:1597–605.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Nahid MA, Satoh M, Chan EKL. Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol. 2011;186:1723–34.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Chan EKL, Ceribelli A, Satoh M. MicroRNA-146a in autoimmunity and innate immune responses. Ann Rheum Dis. 2013;72:ii90–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Nahid MA, Satoh M, Chan EKL. MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol. 2011;8:388–403.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009;60:1065–75.PubMedCrossRefGoogle Scholar
  24. 24.
    Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–7.PubMedCrossRefGoogle Scholar
  25. 25.
    The American College of Rheumatology response criteria for proliferative and membranous renal disease in systemic lupus erythematosus clinical trials. Arthritis Rheum. 2006;54:421-32.Google Scholar
  26. 26.
    Feng X, Wu H, Grossman JM, Hanvivadhanakul P, FitzGerald JD, Park GS, et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54:2951–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Nahid MA, Yao B, Dominguez-Gutierrez PR, Kesavalu L, Satoh M, Chan EKL. Regulation of TLR2-Mediated Tolerance and Cross-Tolerance through IRAK4 Modulation by miR-132 and miR-212. J Immunol. 2013;190:1250–63.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Fiehn C, Hajjar Y, Mueller K, Waldherr R, Ho AD, Andrassy K. Improved clinical outcome of lupus nephritis during the past decade: importance of early diagnosis and treatment. Ann Rheum Dis. 2003;62:435–9.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Moroni G, Quaglini S, Gallelli B, Banfi G, Messa P, Ponticelli C. The long-term outcome of 93 patients with proliferative lupus nephritis. Nephrol Dial Transplant. 2007;22:2531–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Dall’era M, Chakravarty EF. Treatment of mild, moderate, and severe lupus erythematosus: focus on new therapies. Curr Rheumatol Rep. 2011;13:308–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Chaturvedi A, Pierce SK. How location governs toll-like receptor signaling. Traffic. 2009;10:621–8.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.PubMedCrossRefGoogle Scholar
  34. 34.
    Mirzayan MJ, Schmidt RE, Witte T. Prognostic parameters for flare in systemic lupus erythematosus. Rheumatology (Oxford). 2000;39:1316–9.CrossRefGoogle Scholar
  35. 35.
    Peyssonnaux C, Nizet V, Johnson RS. Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle. 2008;7:28–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Hamilton JA, Lacey DC, Turner A, de Kok B, Huynh J, Scholz GM. Hypoxia enhances the proliferative response of macrophages to CSF-1 and their pro-survival response to TNF. PLoS ONE. 2012;7:e45853.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, Scholz GM, et al. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol. 2009;182:7974–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Bosco MC, Puppo M, Blengio F, Fraone T, Cappello P, Giovarelli M, et al. Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration. Immunobiology. 2008;213:733–49.PubMedCrossRefGoogle Scholar
  39. 39.
    Sica A, Melillo G, Varesio L. Hypoxia: a double-edged sword of immunity. J Mol Med (Berl). 2011;89:657–65.CrossRefGoogle Scholar
  40. 40.
    Bosco MC, Varesio L. Dendritic cell reprogramming by the hypoxic environment. Immunobiology. 2012;217:1241–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Deicher R, Horl WH. Hepcidin: a molecular link between inflammation and anaemia. Nephrol Dial Transplant. 2004;19:521–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Song H, Yan YL, Titus T, He X, Postlethwait JH. The role of stat1b in zebrafish hematopoiesis. Mech Dev. 2011;128:442–56.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sow FB, Alvarez GR, Gross RP, Satoskar AR, Schlesinger LS, Zwilling BS, et al. Role of STAT1, NF-kappaB, and C/EBPbeta in the macrophage transcriptional regulation of hepcidin by mycobacterial infection and IFN-gamma. J Leukoc Biol. 2009;86:1247–58.PubMedCrossRefGoogle Scholar
  44. 44.
    Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 2010;184:4955–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 2011;7:e1002128.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Ghani S, Riemke P, Schonheit J, Lenze D, Stumm J, Hoogenkamp M, et al. Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood. 2011;118:2275–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Starczynowski DT, Kuchenbauer F, Wegrzyn J, Rouhi A, Petriv O, Hansen CL, et al. MicroRNA-146a disrupts hematopoietic differentiation and survival. Exp Hematol. 2011;39:167.e4–78.e4.CrossRefGoogle Scholar
  49. 49.
    Labbaye C, Testa U. The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer. J Hematol Oncol. 2012;5:13.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Nahid MA, Pauley KM, Satoh M, Chan EKL. miR-146a is critical for endotoxin-induced tolerance. J Biol Chem. 2009;284:34590–9.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EKL. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008;10:R101.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paul R. Dominguez-Gutierrez
    • 1
  • Angela Ceribelli
    • 1
    • 3
    • 5
  • Minoru Satoh
    • 2
    • 4
  • Eric S. Sobel
    • 2
  • Westley H. Reeves
    • 2
  • Edward K. L. Chan
    • 1
  1. 1.Department of Oral BiologyUniversity of FloridaGainesvilleUSA
  2. 2.Department of MedicineUniversity of FloridaGainesvilleUSA
  3. 3.BIOMETRA DepartmentUniversity of MilanMilanItaly
  4. 4.School of Health SciencesUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
  5. 5.Rheumatology and Clinical ImmunologyHumanitas Clinical and Research CenterRozzanoItaly

Personalised recommendations