Advertisement

Journal of Clinical Immunology

, Volume 33, Issue 3, pp 567–576 | Cite as

MiR-320a is Downregulated in Patients with Myasthenia Gravis and Modulates Inflammatory Cytokines Production by Targeting Mitogen-activated Protein Kinase 1

  • Zhuoan Cheng
  • Shaobo Qiu
  • Lin Jiang
  • Anle Zhang
  • Wenjing Bao
  • Ping Liu
  • Jianwen Liu
Original Research

Abstract

Myasthenia gravis (MG) are T-cell dependent antibody-mediated autoimmune disorders, microRNAs are important regulators of human autoimmune disease pathogenesis. Here, we investigated the miRNAs expression profiles in MG for the first time and found that miR-320a was significantly downregulated in MG patients compared to normal healthy people. Meanwhile, pro-inflammatory cytokins in MG patients were overexpressed. Furthermore, we identified MAPK1 as a direct target of miR-320a. Downregulation of miR-320a induced the overexpression of pro-inflammatory cytokins through promoting COX-2 expression. This process was modulated by ERK/ NF-κB pathways. Taken together, our findings suggested that miR-320a could play a role in modulation of inflammatory cytokins production.

Keywords

Myasthenia gravis miR-320a MAPK1 cytokine COX-2 

Abbreviations

MG

Myasthenia gravis

MAPK1

Mitogen-activated protein kinase1

3′UTR

3′untranslated region

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

PBMCs

Peripheral blood mononuclear cell

Notes

Acknowledgments

This work was supported by Shanghai Science and Technology Commission (No. 10JC1414500) and the Shanghai Committee of Science and Technology [grant 11DZ2260600].

Supplementary material

10875_2012_9834_Fig6_ESM.jpg (25 kb)
Online Resource 1

MiR-486-5p (A) and miR-363(B) expression differentiate 34 MG patients from 10 normal control by real-time PCR (JPEG 24 kb)

10875_2012_9834_MOESM1_ESM.tif (1.9 mb)
High resolution image (TIFF 1975 kb)
10875_2012_9834_Fig7_ESM.jpg (26 kb)
Online Resource 2

The bioinformatic analysis data by targetscan database (available at http://www.targetscan.org/) (JPEG 25 kb)

10875_2012_9834_MOESM2_ESM.tif (4.9 mb)
High resolution image (TIFF 4982 kb)

References

  1. 1.
    Tuzun E, Huda R, Christadoss P. Complement and cytokine based therapeutic strategies in myasthenia gravis. J Autoimmun. 2011;37:136–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Yang H, Zhang Y, Wu M, Li J, Zhou W, Li G, et al. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile. Inflamm Res. 2010;59:197–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148:32–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Pauley KM, Cha S, Chan EK. MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun. 2009;32:189–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58:1284–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsitsiou E, Lindsay MA. microRNAs and the immune response. Curr Opin Pharmacol. 2009;9:514–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 2010;184:6773–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Jiang L, Cheng Z, Qiu S, Que Z, Bao W, Jiang C, et al. Altered let-7 expression in Myasthenia gravis and let-7c mediated regulation of IL-10 by directly targeting IL-10 in Jurkat cells. Int Immunopharmacol. 2012;14:217–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J Neuroimmunol. 2000;108:227–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Cedeno S, Cifarelli DF, Blasini AM, Paris M, Placeres F, Alonso G, et al. Defective activity of ERK-1 and ERK-2 mitogen-activated protein kinases in peripheral blood T lymphocytes from patients with systemic lupus erythematosus: potential role of altered coupling of Ras guanine nucleotide exchange factor hSos to adapter protein Grb2 in lupus T cells. Clin Immunol. 2003;106:41–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Bernard MP, Phipps RP. CpG oligodeoxynucleotides induce cyclooxygenase-2 in human B lymphocytes: implications for adjuvant activity and antibody production. Clin Immunol. 2007;125:138–48.PubMedCrossRefGoogle Scholar
  13. 13.
    Hirano T, Oka K, Umezawa Y, Hirata M, Oh-i T, Koga M. Individual pharmacodynamics assessed by antilymphocyte action predicts clinical cyclosporine efficacy in psoriasis. Clin Pharmacol Ther. 1998;63:465–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Dimitri CA, Dowdle W, MacKeigan JP, Blenis J, Murphy LO. Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Curr Biol. 2005;15:1319–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang GX, Navikas V, Link H. Cytokines and the pathogenesis of myasthenia gravis. Muscle Nerve. 1997;20:543–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Williams LM, Lali F, Willetts K, Balague C, Godessart N, Brennan F, et al. Rac mediates TNF-induced cytokine production via modulation of NF-kappaB. Mol Immunol. 2008;45:2446–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Qi H, Li J, Allman W, Saini SS, Tuzun E, Wu X, et al. Genetic deficiency of estrogen receptor alpha fails to influence experimental autoimmune myasthenia gravis pathogenesis. J Neuroimmunol. 2011;234:165–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Vrolix K, Niks EH, Le Panse R, van Ostaijen-Ten Dam MM, Muris AH, der Zijde CM J-v, et al. Reduced thymic expression of ErbB receptors without auto-antibodies against synaptic ErbB in myasthenia gravis. J Neuroimmunol. 2011;232:158–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem. 2010;285:29223–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Diakos C, Zhong S, Xiao Y, Zhou M, Vasconcelos GM, Krapf G, et al. TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood. 2010;116:4885–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, et al. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting beta-catenin. Biochem Biophys Res Commun. 2012;420:787–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Mu L, Zhang Y, Sun B, Wang J, Xie X, Li N, et al. Activation of the receptor for advanced glycation end products (RAGE) exacerbates experimental autoimmune myasthenia gravis symptoms. Clin Immunol. 2011;141:36–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang HB, Shi FD, Li H, van der Meide PH, Ljunggren HG, Link H. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis. Clin Immunol. 2000;95:156–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Conti-Fine BM, Milani M, Wang W. CD4+ T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci. 2008;1132:193–209.PubMedCrossRefGoogle Scholar
  25. 25.
    Mu L, Sun B, Kong Q, Wang J, Wang G, Zhang S, et al. Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology. 2009;128:e826–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Shandley S, Martinez S, Krolick K. IL-4 receptor as a bridge between the immune system and muscle in experimental myasthenia gravis I: up-regulation of muscle IL-15 by IL-4. Clin Immunol. 2009;132:246–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Khan AQ, Khan R, Qamar W, Lateef A, Ali F, Tahir M, et al. Caffeic acid attenuates 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced NF-kappaB and COX-2 expression in mouse skin: abrogation of oxidative stress, inflammatory responses and proinflammatory cytokine production. Food Chem Toxicol. 2012;50:175–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Aruna BV, Ben-David H, Sela M, Mozes E. A dual altered peptide ligand down-regulates myasthenogenic T cell responses and reverses experimental autoimmune myasthenia gravis via up-regulation of Fas-FasL-mediated apoptosis. Immunology. 2006;118:413–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Longhua Hospital Affiliated to Shanghai University of traditional Chinese MedicineShanghaiPeople’s Republic of China
  3. 3.The China Affiliated Hospital of Liaoning University of Traditional Chinese MedicineLiaoningPeople’s Republic of China

Personalised recommendations