Advertisement

Journal of Clinical Immunology

, Volume 33, Issue 3, pp 520–525 | Cite as

Inflammatory Bowel Disease and T cell Lymphopenia in G6PC3 Deficiency

  • Philippe Bégin
  • Natalie Patey
  • Pascal Mueller
  • Andrée Rasquin
  • Alain Sirard
  • Christoph Klein
  • Élie Haddad
  • Éric Drouin
  • Françoise Le Deist
Original Research

Abstract

Purpose

G6PC3 deficiency presents as a complex and heterogeneous syndrome that classically associates severe congenital neutropenia with cardiac and urogenital developmental defects. Here we investigate the findings of T cell lymphopenia and inflammatory bowel disease in a child with G6PC3 deficiency due to compound heterozygous mutations in intron 3 (c.IVS3-1 G>A) and exon 6 (c.G778G/C; p.Gly260/Arg).

Methods

Histological examination was conducted on all biopsy specimens. Immunophenotyping and lymphocyte proliferation assays were performed. Immunoglobulin levels and vaccine responses were measured.

Results

The patient showed persistent global T cell lymphopenia, with only 8 to 13 % of thymic naive CD31+CD45RA+ cells among CD4 T cells (normal range 27–60 %). Proliferation assays and vaccine responses were within normal limits. The gastrointestinal inflammatory lesions were very closely related to those of glycogen storage disease type 1b, with a Crohn’s-like appearance but without granuloma or increased cryptic abscesses. The gastrointestinal disease responded to infliximab therapy. These findings were associated with a polyclonal hypergammaglobuliemia G.

Conclusion

G6PC3 deficiency may present with inflammatory bowel disease and T cell lymphopenia. The diagnosis should thus be considered in a patient with chronic congenital neutropenia and gastrointestinal symptoms. Patients with confirmed disease should also undergo T cell phenotyping to rule out cellular immunodeficiency.

Keywords

G6PC3 congenital neutropenia inflammatory bowel disease lymphopenia G6PT thymic naive 

Notes

Conflicts of interest

None of the authors has any potential financial conflict of interest related to this manuscript

References

  1. 1.
    Klein C, Welte K. Genetic insights into congenital neutropenia. Clin Rev Allergy Immunol. 2010;38(1):68–74. doi: 10.1007/s12016-009-8130-5.PubMedCrossRefGoogle Scholar
  2. 2.
    Boztug K, Appaswamy G, Ashikov A, et al. A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med. 2009;360(1):32–43. doi: 10.1056/NEJMoa0805051.PubMedCrossRefGoogle Scholar
  3. 3.
    Chou JY, Jun HS, Mansfield BC. Glycogen storage disease type I and G6Pase-beta deficiency: etiology and therapy. Nat Rev Endocrinol. 2010;6(12):676–88. doi: 10.1038/nrendo.2010.189.PubMedCrossRefGoogle Scholar
  4. 4.
    Guionie O, Clottes E, Stafford K, et al. Identification and characterisation of a new human glucose-6-phosphatase isoform. FEBS Lett. 2003;551(1–3):159–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Jun HS, Lee YM, Cheung YY, et al. Lack of glucose recycling between endoplasmic reticulum and cytoplasm underlies cellular dysfunction in glucose-6-phosphatase-beta-deficient neutrophils in a congenital neutropenia syndrome. Blood. 2010;116(15):2783–92. doi: 10.1182/blood-2009-12-258491.PubMedCrossRefGoogle Scholar
  6. 6.
    Hayee B, Antonopoulos A, Murphy EJ, et al. G6PC3 mutations are associated with a major defect of glycosylation: a novel mechanism for neutrophil dysfunction. Glycobiology. 2011;21(7):914–24. doi: 10.1093/glycob/cwr023.PubMedCrossRefGoogle Scholar
  7. 7.
    Arostegui JI, de Toledo JS, Pascal M, et al. A novel G6PC3 homozygous 1-bp deletion as a cause of severe congenital neutropenia. Blood. 2009;114(8):1718–9. doi: 10.1182/blood-2009-04-219451.PubMedCrossRefGoogle Scholar
  8. 8.
    Banka S, Chervinsky E, Newman WG, et al. Further delineation of the phenotype of severe congenital neutropenia type 4 due to mutations in G6PC3. Eur J Hum Genet: EJHG. 2011;19(1):18–22. doi: 10.1038/ejhg.2010.136.PubMedCrossRefGoogle Scholar
  9. 9.
    Banka S, Newman WG, Ozgul RK, et al. Mutations in the G6PC3 gene cause Dursun syndrome. Am J Med Genet A. 2010;152A(10):2609–11. doi: 10.1002/ajmg.a.33615.PubMedCrossRefGoogle Scholar
  10. 10.
    Gatti S, Boztug K, Pedini A, et al. A case of syndromic neutropenia and mutation in G6PC3. J Pediatr Hematol Oncol. 2011;33(2):138–40. doi: 10.1097/MPH.0b013e3181f46bf4.PubMedCrossRefGoogle Scholar
  11. 11.
    Germeshausen M, Zeidler C, Stuhrmann M, et al. Digenic mutations in severe congenital neutropenia. Haematologica. 2010;95(7):1207–10. doi: 10.3324/haematol.2009.017665.PubMedCrossRefGoogle Scholar
  12. 12.
    McDermott DH, De Ravin SS, Jun HS, et al. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood. 2010;116(15):2793–802. doi: 10.1182/blood-2010-01-265942.PubMedCrossRefGoogle Scholar
  13. 13.
    Le Deist F, Thoenes G, Corado J, et al. Immunodeficiency with low expression of the T cell receptor/CD3 complex. Effect on T lymphocyte activation. Eur J Immunol. 1991;21(7):1641–7. doi: 10.1002/eji.1830210709.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang L, Notohara K, Levy MJ, et al. IgG4-positive plasma cell infiltration in the diagnosis of autoimmune pancreatitis. Mod Pathol. 2007;20(1):23–8. doi: 10.1038/modpathol.3800689.PubMedCrossRefGoogle Scholar
  15. 15.
    Boztug K, Rosenberg PS, Dorda M, et al. Extended spectrum of human glucose-6-phosphatase catalytic subunit 3 deficiency: novel genotypes and phenotypic variability in severe congenital neutropenia. The Journal of pediatrics. 2012;160(4):679–83 e2. doi: 10.1016/j.jpeds.2011.09.019.PubMedCrossRefGoogle Scholar
  16. 16.
    Xia J, Bolyard AA, Rodger E, et al. Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol. 2009;147(4):535–42. doi: 10.1111/j.1365-2141.2009.07888.x.PubMedCrossRefGoogle Scholar
  17. 17.
    Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34(1):70–4. doi: 10.1038/ng1149.PubMedCrossRefGoogle Scholar
  18. 18.
    Eberle P, Berger C, Junge S, et al. Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11.2 microdeletion and partial DiGeorge syndrome. Clin Exp Immunol. 2009;155(2):189–98. doi: 10.1111/j.1365-2249.2008.03809.x.PubMedCrossRefGoogle Scholar
  19. 19.
    Pan CJ, Lin B, Chou JY. Transmembrane topology of human glucose 6-phosphate transporter. J Biol Chem. 1999;274(20):13865–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Melis D, Fulceri R, Parenti G, et al. Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur J Pediatr. 2005;164(8):501–8. doi: 10.1007/s00431-005-1657-4.PubMedCrossRefGoogle Scholar
  21. 21.
    Dieckgraefe BK, Korzenik JR, Husain A, et al. Association of glycogen storage disease 1b and Crohn disease: results of a North American survey. Eur J Pediatr. 2002;161 Suppl 1:S88–92. doi: 10.1007/s00431-002-1011-z.PubMedGoogle Scholar
  22. 22.
    Visser G, Rake JP, Fernandes J, et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr. 2000;137(2):187–91. doi: 10.1067/mpd.2000.105232.PubMedCrossRefGoogle Scholar
  23. 23.
    Dispenzieri A, Gertz MA, Therneau TM, et al. Retrospective cohort study of 148 patients with polyclonal gammopathy. Mayo Clin Proc. 2001;76(5):476–87. doi: 10.4065/76.5.476.PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez-Boyanapalli RF, Frasch SC, McPhillips K, et al. Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood. 2009;113(9):2047–55. doi: 10.1182/blood-2008-05-160564.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Philippe Bégin
    • 1
    • 2
    • 5
    • 6
  • Natalie Patey
    • 7
  • Pascal Mueller
    • 1
    • 3
  • Andrée Rasquin
    • 3
  • Alain Sirard
    • 1
    • 4
  • Christoph Klein
    • 8
  • Élie Haddad
    • 1
    • 2
    • 9
  • Éric Drouin
    • 1
    • 3
  • Françoise Le Deist
    • 1
    • 9
  1. 1.Department of PediatricsCHU Sainte-Justine and Université de MontréalMontrealCanada
  2. 2.Division of Immunology, Department of PediatricsCHU Sainte-Justine and Université de MontréalMontrealCanada
  3. 3.Division of Gastroenterology, Department of PediatricsCHU Sainte-Justine and Université de MontréalMontrealCanada
  4. 4.Division of General Pediatrics, Department of PediatricsCHU Sainte-Justine and Université de MontréalMontrealCanada
  5. 5.Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM)MontrealCanada
  6. 6.Division of ImmunologyCentre Hospitalier de l’Université de Montréal (CHUM)MontrealCanada
  7. 7.Department of PathologyCHU Sainte-Justine and Université de MontréalMontrealCanada
  8. 8.University Children’s Hospital, Ludwig Maximilians UniversityMunichGermany
  9. 9.Department of Immunology and MicrobiologyCHU Sainte-Justine and Université de MontréalMontrealCanada

Personalised recommendations