Journal of Clinical Immunology

, Volume 33, Issue 1, pp 190–199 | Cite as

Activation of Liver X Receptors Suppresses Inflammatory Gene Expressions and Transcriptional Corepressor Clearance in Rheumatoid Arthritis Fibroblast Like Synoviocytes

  • Chong-Hyeon Yoon
  • Yong-Jin Kwon
  • Sang-Won Lee
  • Yong-Beom Park
  • Soo-Kon Lee
  • Min-Chan Park
Original Research



Liver X receptors (LXR) are nuclear receptors that play important roles in lipid metabolism and transport. LXR also suppress inflammatory responses in macrophages through a unique mechanism of transrepression. This study was performed to investigate whether the synthetic LXR agonist GW3965 can modulate the inflammatory status of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and to identify the mechanism for their effect.


RA FLS were treated with 0.1 and 1 μM of GW3965, a synthetic LXR agonist. The mRNA expressions of pro-inflammatory mediators were measured using quantitative real-time PCR. Apoptotic cell death of RA FLS was assessed using TUNEL assay and determination of caspase-3 activity by a colorimetric assay. The levels of transcriptional corepressors including NCoR and SMRT were determined using western blot analyses.


Treatment of RA FLS with GW3965 induced dose-dependent reductions in mRNA expression of pro-inflammatory mediators (IL-1β, IL-6, MMP-9, CCL-2, CCL-7, and COX-2). However, treatment with GW3965 at the concentration selected for this study had no effect on apoptosis of RA FLS. Decreased productions of NCoR and SMRT by LPS stimulation was attenuated by GW3965 treatment.


GW3965 treatment suppressed mRNA expressions of pro-inflammatory mediators from RA FLS and inhibited the clearance of transcriptional corepressors. These data suggest that LXR activation can be used as a therapeutic approach to reduce the synovial inflammation in RA.


Rheumatoid arthritis liver X receptors GW3965 fibroblast like synoviocyte transcriptional corepressor 



This study was supported by a grant from the Korean Health Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A100134) and a grant from the Yonsei University Research Fund [6-2010-0124].

We are grateful to Tae-Yeon Kim and Eunji Lee, Gangnam Severance Hospital Biomedical Research Center, for technical assistance, and to J. L. Collins, PhD, GlaxoSmithKline R&D, USA, for providing the GW3965 compound. GlaxoSmithKline had no role in study design, data collection, data analysis, data interpretation or manuscript preparation.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 2003;9:213–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Morales JR, Ballesteros I, Deniz JM, Hurtado O, Vivancos J, Nombela F, et al. Activation of Liver X Receptors promotes neuroprotection and reduces brain inflammation in experimental stroke. Circulation. 2008;118:1450–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Terasaka N, Hiroshima A, Ariga A, Honzumi S, Koieyama T, Inaba T, et al. Liver X receptor agonists inhibit tissue factor expression in macrophages. FEBS J. 2005;272:1546–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Scholz H, Lund T, Dahle MK, Collins JL, Korsgren O, Wang JE, et al. The synthetic liver X receptor agonist GW3965 reduces tissue factor production and inflammatory responses in human islets in vitro. Diabetologia. 2009;52:1352–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Castrillo A, Joseph SB, Marathe C, Mangelsdorf DJ, Tontonoz P. Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem. 2003;278:10443–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang YY, Dahle MK, Agren J, Myhre AE, Reinholt FP, Foster SJ, et al. Activation of the liver X receptor protects against hepatic injury in endotoxemia by suppressing Kupffer cell activation. Shock. 2006;25:141–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Ghisletti S, Huang W, Ogawa S, et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell. 2007;25:57–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Ghisletti S, Huang W, Jepsen K, Benner C, Hardiman G, Rosenfeld MG, et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 2009;23:681–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Venteclef N, Jakobsson T, Ehrlund A, Damdimopoulos A, Mikkonen L, Ellis E, et al. GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response. Genes Dev. 2010;24:381–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Haringman JJ, Smeets TJ, Reinders-Blankert P, Tak PP. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis. 2006;65:294–300.PubMedCrossRefGoogle Scholar
  12. 12.
    Iwamoto T, Okamoto H, Toyama Y, Momohara S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 2008;275:4448–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Boissier MC. Cell and cytokine imbalances in rheumatoid synovitis. Joint Bone Spine. 2011;78:230–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Chintalacharuvu SR, Sandusky GE, Burris TP, Burmer GC, Nagpal S. Liver X receptor is a therapeutic target in collagen-induced arthritis. Arthritis Rheum. 2007;56:1365–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Park MC, Kwon YJ, Chung SJ, Park YB, Lee SK. Liver X receptor agonist prevents the evolution of collagen-induced arthritis in mice. Rheumatology. 2010;49:882–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Asquith DL, Miller AM, Hueber AJ, McKinnon HJ, Sattar N, Graham GJ, et al. Liver X receptor agonism promotes articular inflammation in murine collagen-induced arthritis. Arthritis Rheum. 2009;60:2655–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB, et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem. 2002;45:1963–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Myhre AE, Agren J, Dahle MK, Tamburstuen MV, Lyngstadaas SP, Collins AJ, et al. Liver X receptor is a key regulator of cytokine release in human monocytes. Shock. 2008;29:468–74.PubMedGoogle Scholar
  20. 20.
    Choe SS, Choi AH, Lee JW, Kim KH, Chung JJ, Park J, et al. Chronic activation of liver X receptor induces beta-cell apoptosis through hyperactivation of lipogenesis: liver X receptor-mediated lipotoxicity in pancreatic beta-cells. Diabetes. 2007;56:1534–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Meng ZX, Nie J, Ling JJ, Sun JX, Zhu YX, Gao L, et al. Activation of liver X receptors inhibits pancreatic islet beta cell proliferation through cell cycle arrest. Diabetologia. 2009;52:125–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Murphy AJ, Akhtari M, Tolani S, Pagler T, Bijl N, Kuo CL, et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest. 2011;121:4138–49.PubMedCrossRefGoogle Scholar
  23. 23.
    Pascual-García M, Carbó JM, León T, Matalonga J, Out R, Van Berkel T, et al. Liver X receptors inhibit macrophage proliferation through downregulation of cyclins D1 and B1 and cyclin-dependent kinases 2 and 4. J Immunol. 2011;186:4656–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim KH, Lee GY, Kim JI, Ham M. Won Lee J, Kim JB. Inhibitory effect of LXR activation on cell proliferation and cell cycle progression through lipogenic activity. J Lipid Res. 2010;51:3425–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Pommier AJ, Alves G, Viennois E, Bernard S, Communal Y, Sion B, et al. Liver X Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene. 2010;29:2712–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Wachsmann D, Sibilia J. Survival in the rheumatoid synovium. Joint Bone Spine. 2011;78:435–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology. 2006;45:669–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000;14:2819–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem. 2002;277:11019–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Ogawa S, Lozach J, Jepsen K, Sawka-Verhelle D, Perissi V, Sasik R, et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc Natl Acad Sci USA. 2004;101:14461–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang W, Ghisletti S, Saijo K, Gandhi M, Aouadi M, Tesz GJ, et al. Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature. 2011;470:414–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Morel J, Berenbaum F. Signal transduction pathways: new targets for treating rheumatoid arthritis. Joint Bone Spine. 2004;71:503–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Benito MJ, Murphy E, Murphy EP, Van den Berg WB, FitzGerald O, Bresnihan B. Increased synovial tissue NF-κB1 expression at sites adjacent to the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum. 2004;50:1781–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Shiozawa S, Tsumiyama K. Pathogenesis of rheumatoid arthritis and c-Fos/AP-1. Cell Cycle. 2009;8:1539–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Schroen DJ, Chen JD, Vincenti MP, Brinckerhoff CE. The nuclear receptor corepressor SMRT inhibits interstitial collagenase (MMP-1) transcription through an HRE-independent mechanism. Biochem Biophys Res Commun. 1997;237:52–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chong-Hyeon Yoon
    • 1
  • Yong-Jin Kwon
    • 2
  • Sang-Won Lee
    • 2
  • Yong-Beom Park
    • 2
  • Soo-Kon Lee
    • 2
  • Min-Chan Park
    • 2
  1. 1.Department of Internal Medicine, College of MedicineThe Catholic University of KoreaSeoulSouth Korea
  2. 2.Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations