Journal of Clinical Immunology

, Volume 33, Issue 1, pp 96–110 | Cite as

Post-Transplantation B Cell Function in Different Molecular Types of SCID

  • Rebecca H. Buckley
  • Chan M. Win
  • Barry K. Moser
  • Roberta E. Parrott
  • Elisa Sajaroff
  • Marcella Sarzotti-Kelsoe
Original Research



Severe combined immunodeficiency (SCID) is a syndrome of diverse genetic cause characterized by profound deficiencies of T, B and sometimes NK cell function. Non-ablative HLA-identical or rigorously T cell-depleted haploidentical parental bone marrow transplantation (BMT) results in thymus-dependent genetically donor T cell development in the recipients, leading to a high rate of long-term survival. However, the development of B cell function has been more problematic. We report here results of analyses of B cell function in 125 SCID recipients prior to and long-term after non-ablative BMT, according to their molecular type.


Studies included blood immunoglobulin measurements; antibody titers to standard vaccines, blood group antigens and bacteriophage Φ X 174; flow cytometry to examine for markers of immaturity, memory, switched memory B cells and BAFF receptor expression; B cell chimerism; B cell spectratyping; and B cell proliferation.


The results showed that B cell chimerism was not required for normal B cell function in IL7Rα-Def, ADA-Def and CD3-Def SCIDs. In X-linked-SCID, Jak3-Def SCID and those with V-D-J recombination defects, donor B cell chimerism was necessary for B cell function to develop.


The most important factor determining whether B cell function develops in SCID T cell chimeras is the underlying molecular defect. In some types, host B cells function normally. In those molecular types where host B cell function did not develop, donor B cell chimerism was necessary to achieve B cell function. 236 words


B cell function B cell chimerism bone marrow transplantation severe combined immunodeficiency molecular type memory B cells 



We thank the patients and their families, the physicians who referred them and who cared for them, Dr. A. Yu and D. Ozaki for their help with the BCR spectratype data, the members of the Duke University DNA Analysis Facility and the Duke Comprehensive Cancer Center Flow Cytometry Facility. This research was supported by National Institutes of Health grants AI47605 and AI042951, and in part by the Duke RBL (AI58607), and the Duke CTR (AI51445).

Disclosures: None of the authors has any commercial affiliations or consultancies to disclose.

Supplementary material

10875_2012_9797_MOESM1_ESM.docx (37 kb)
Supplemental Figure 1 BAFF-R expression after transplantation. BAFF-R expression was tested by flow cytometry on CD19+ B cells in 56 PBMC samples from 27 SCID patients <12 years after BM transplantation, and in 15 control PBMC samples (14 individuals of ≥20 years of age and one newborn). (DOCX 37 kb)
10875_2012_9797_MOESM2_ESM.docx (439 kb)
Supplemental Fig. 2 BCR Spectratype results from PBMC samples of an X-linked (X-1) (a), a Jak3-Def (J-2) (b), and an IL7Rα-Def (7–4) (c) SCID patients and a normal control (d). (DOCX 439 kb)


  1. 1.
    Buckley RH. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res. 2011;49(1–3):25–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL, et al. Hematopoietic stem cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999;340:508–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99(3):872–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Puck JM, Deschenes SM, Porter JC, Dutra AS, Brown CJ, Willard HF, et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet. 1993;2:1099–104.PubMedCrossRefGoogle Scholar
  5. 5.
    Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 1993;73:147–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Hirschhorn R. Immunodeficiency diseases due to deficiency of adenosine deaminase. In: Ochs HD, Smith CIE, Puck JM, editors. Primary Immunodeficiency Diseases: A Molecular and Genetic Approach. 1st ed. New York and Oxford: Oxford University Press; 1999. p. 121–39.Google Scholar
  7. 7.
    Roberts JL, Lengi A, Brown SM, Chen M, Zhou Y-J, O’Shea JJ, et al. Janus Kinase 3 (JAK3) deficiency: clinical, immunologic and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood. 2004;103:209–18.CrossRefGoogle Scholar
  8. 8.
    Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20(4):394–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. RAG mutations in human B cell-negative SCID. Science. 1996;274:97–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Roberts JL, Buckley RH, Luo B, Pei J, Lapidus A, Peri S, et al. CD45-deficient severe combined immunodeficiency caused by uniparental disomy. Proc Natl Acad Sci U S A. 2012;109:10456–61.Google Scholar
  11. 11.
    Moshous D, Li L, Chasseval R, Philippe N, Jabado N, Cowan MJ, et al. A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p. Hum Mol Genet. 2000;9(4):583–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Buck D, Moshous D, de Chasseval R, Ma Y, Le Deist F, Cavazzana-Calvo M, et al. Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol. 2006;36(1):224–35.PubMedCrossRefGoogle Scholar
  13. 13.
    van der Burg M, Ijspeert H, Verkaik NS, Turul T, Wiegant WW, Morotomi-Yano K, et al. A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest. 2009;119(1):91–8.PubMedGoogle Scholar
  14. 14.
    Dadi HK, Simon AJ, Roifman CM. Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Engl J Med. 2003;349(19):1821–8.PubMedCrossRefGoogle Scholar
  15. 15.
    de Saint Basile G, Geissmann F, Flori E, Uring-Lambert B, Soudais C, Cavazzana-Calvo M, et al. Severe combined immunodeficiency caused by deficiency in either the delta or the epsilon subunit of CD3. J Clin Invest. 2004;114(10):1512–7.PubMedGoogle Scholar
  16. 16.
    Roberts JL, Lauritsen JHP, Cooney M, Parrott RE, Sajaroff EO, Win CM, et al. T-B+ NK+ severe combined immunodeficiency caused by complete deficiency of the CD3 zeta subunit of the T cell antigen receptor complex. Blood. 2007;109:3198–206.PubMedCrossRefGoogle Scholar
  17. 17.
    Buckley RH, Schiff SE, Sampson HA, Schiff RI, Markert ML, Knutsen AP, et al. Development of immunity in human severe primary T cell deficiency following haploidentical bone marrow stem cell transplantation. J Immunol. 1986;136:2398–407.PubMedGoogle Scholar
  18. 18.
    Moen RC, Horowitz SD, Sondel PM, Borcherding WR, Trigg ME, Billing R, et al. Immunologic reconstitution after haploidentical bone marrow transplantation for immune deficiency disorders: treatment of bone marrow cells with monoclonal antibody CT-2 and complement. Blood. 1987;70:664–9.PubMedGoogle Scholar
  19. 19.
    Dror Y, Gallagher R, Wara DW, Colombe BW, Merino A, Benkerrou M, et al. Immune reconstitution in severe combined immunodeficiency disease after lectin-treated, T cell depleted haplocompatible bone marrow transplantation. Blood. 1993;81:2021–30.PubMedGoogle Scholar
  20. 20.
    Sarzotti-Kelsoe M, Win CM, Parrott RE, Cooney M, Moser BK, Roberts JL, et al. Thymic output, T-cell diversity, and T-cell function in long-term human SCID chimeras. Blood. 2009;114(7):1445–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Haddad E, Deist FL, Aucouturier P, Cavazzana-Calvo M, Blanche S, Basile GD, et al. Long-term chimerism and B-cell function after bone marrow transplantation in patients with severe combined immunodeficiency with B cells: a single-center study of 22 patients. Blood. 1999;94(8):2923–30.PubMedGoogle Scholar
  22. 22.
    van Leeuwen JE, van Tol MJ, Joosten AM, Schellekens PT, van den Bergh RL, Waaijer JL, et al. Relationship between patterns of engraftment in peripheral blood and immune reconstitution after allogeneic bone marrow transplantation for (severe) combined immunodeficiency. Blood. 1994;84:3936–47.PubMedGoogle Scholar
  23. 23.
    O’Marcaigh AS, DeSantes K, Hu D, Pabst H, Horn B, Li L, et al. Bone marrow transplantation for T-B- severe combined immunodeficiency disease in Athabascan-speaking native Americans. Bone Marrow Transplant. 2001;27(7):703–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Mazzolari E, Forino C, Guerci S, Imberti L, Lanfranchi A, Porta F, et al. Long-term immune reconstitution and clinical outcome after stem cell transplantation for severe T-cell immunodeficiency. J Allergy Clin Immunol. 2007;120(4):892–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Neven B, Leroy S, Decaluwe H, Le Deist F, Picard C, Moshous D, et al. Long-term outcome after hematopoietic stem cell transplantation of a single-center cohort of 90 patients with severe combined immunodeficiency. Blood. 2009;113(17):4114–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Patel NC, Chinen J, Rosenblatt HM, Hanson IC, Brown BS, Paul ME, et al. Long-term outcomes of nonconditioned patients with severe combined immunodeficiency transplanted with HLA-identical or haploidentical bone marrow depleted of T cells with anti-CD6 mAb. J Allergy Clin Immunol. 2008;122(6):1185–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Patel NC, Chinen J, Rosenblatt HM, Hanson IC, Krance RA, Paul ME, et al. Outcomes of patients with severe combined immunodeficiency treated with hematopoietic stem cell transplantation with and without preconditioning. J Allergy Clin Immunol. 2009;124(5):1062–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Slatter MA, Brigham K, Dickinson AM, Harvey HL, Barge D, Jackson A, et al. Long-term immune reconstitution after anti-CD52-treated or anti-CD34-treated hematopoietic stem cell transplantation for severe T-lymphocyte immunodeficiency. J Allergy Clin Immunol. 2007;121:361–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Dvorak CC, Hung GY, Horn B, Dunn E, Oon CY, Cowan MJ. Megadose CD34(+) cell grafts improve recovery of T cell engraftment but not B cell immunity in patients with severe combined immunodeficiency disease undergoing haplocompatible nonmyeloablative transplantation. Biol Blood Marrow Transplant. 2008;14(10):1125–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Recher M, Berglund LJ, Avery DT, Cowan MJ, Gennery AR, Smart J, et al. IL-21 is the primary common gamma chain-binding cytokine required for human B-cell differentiation in vivo. Blood. 2011;118(26):6824–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Buckley RH. B cell function in severe combined immunodeficiency after stem cell or gene therapy: A review. J Allergy Clin Immunol. 2010;125:790–7.Google Scholar
  32. 32.
    Buckley RH. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res. 2011;49:25–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell. 2001;105(2):177–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Buckley RH, Dees SC, O’Fallon WM. Serum immunoglobulins I. levels in normal children and in uncomplicated childhood allergy. Pediatrics. 1968;41:600–11.PubMedGoogle Scholar
  35. 35.
    Buckley RH, Dees SC. Serum immunoglobulins. III. Abnormalities associated with chronic urticaria in children. J Allergy. 1967;40:294–303.PubMedCrossRefGoogle Scholar
  36. 36.
    Ochs HD, Davis SD, Wedgwood RJ. Immunologic responses to bacteriophage phi-X 174 in immunodeficiency diseases. J Clin Invest. 1971;50(12):2559–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Den Berg H, Vossen JM, van den Bergh RL, Bayer J, van Tol MJD. Detection of Y chromosome by in situ hybridization in combination with membrane antigens by two-color immunofluorescence. Lab Investig. 1994;64:623–8.Google Scholar
  38. 38.
    Kruetzmann S, Rosado MM, Weber H, Germing U, Tournilhac O, Peter HH, et al. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med. 2003;197(7):939–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith JG, Liu X, Kaufhold RM, Clair J, Caulfield MJ. Development and validation of a gamma interferon ELISPOT assay for quantitation of cellular immune responses to varicella-zoster virus. Clin Diagn Lab Immunol. 2001;8(5):871–9.PubMedGoogle Scholar
  40. 40.
    Campbell MJ, Zelenetz AD, Levy S, Levy R. Use of family specific leader region primers for PCR amplification of the human heavy chain variable region gene repertoire. Mol Immunol. 1992;29(2):193–203.PubMedCrossRefGoogle Scholar
  41. 41.
    Shuttleworth J, Morser J, Burke DC. Expression of interferon-alpha and interferon-beta genes in human lymphoblastoid (Namalwa) cells. Eur J Biochem. 1983;133(2):399–404.PubMedCrossRefGoogle Scholar
  42. 42.
    Tweeddale M, Lim B, Jamal N, Minden M, Messner HA. J Cell Biochem. 1985;117(Suppl 9A). Abstract.Google Scholar
  43. 43.
    Moser BK, Stevens GR, Watts CL. The Two-sample T test versus Satterthwaite’s approximate F test. Commun Stat Theory Methods. 1989;18:3963–75.CrossRefGoogle Scholar
  44. 44.
    Bonferroni CE. Il Calcolo Delle Assicurazioni su Gruppi di Teste. Studi in Onore del Professore Salvatore Ortu Carboni. Rome, Italy: 1935. p. 13–60.Google Scholar
  45. 45.
    Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol. 1996;14:591–617.PubMedCrossRefGoogle Scholar
  46. 46.
    Taylor N, Candotti F, Smith S, Oakes SA, Jahn T, Isakov J, et al. Interleukin-4 signaling in B lymphocytes from patients with X-linked severe combined immunodeficiency. J Biol Chem. 1997;272(11):7314–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Habib T, Senadheera S, Weinberg K, Kaushansky K. The common gamma chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry. 2002;41(27):8725–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Sarzotti M, Patel DD, Li X, Ozaki DA, Cao S, Langdon S, et al. T cell repertoire development in humans with SCID after nonablative allogeneic marrow transplantation. J Immunol. 2003;170(5):2711–8.PubMedGoogle Scholar
  49. 49.
    Peschon J, Morrissey PJ, Grabstein KH, Ramsdell FJ, Marakowsky E, Gliniak BC, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1995;180:1955–60.CrossRefGoogle Scholar
  50. 50.
    Bhattacharya D, Rossi DJ, Bryder D, Weissman IL. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning. J Exp Med. 2006;203(1):73–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Czechowicz A, Kraft D, Weissman IL, Bhattacharya D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007;318(5854):1296–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Prockop SE, Petrie HT. Functional assessment of alphaEbeta7/E-cadherin interactions in the steady state postnatal thymus. Clin Dev Immunol. 2004;11(2):135–41.PubMedCrossRefGoogle Scholar
  53. 53.
    Stephan JL, Vlekova V, Le Deist F, Blanche S, Donadieu J, de Saint-Basile G, et al. Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 cases. J Pediatr. 1993;123:564–72.PubMedCrossRefGoogle Scholar
  54. 54.
    Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64.PubMedCrossRefGoogle Scholar
  55. 55.
    Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Adams S, Howe SJ, et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for x-linked severe combined immunodeficiency. Sci Transl Med. 2011;3(97):97ra79.PubMedCrossRefGoogle Scholar
  56. 56.
    Fumoux F, Guigou V, Blaise D, Maraninchi D, Fougereau M, Schiff C. Reconstitution of human immunoglobulin VH repertoire after bone marrow transplantation mimics B cell ontogeny. Blood. 1993;81:3153–7.PubMedGoogle Scholar
  57. 57.
    Minegishi Y, Okawa H, Sugamura K, Yata J. Preferential utilization of the immature JH segment and absence of somatic mutation in the CDR3 junction of the IgH chain gene in three X-linked severe combined immunodeficiency patients. Int Immunol. 1994;6:1709–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rebecca H. Buckley
    • 1
    • 2
  • Chan M. Win
    • 3
  • Barry K. Moser
    • 4
  • Roberta E. Parrott
    • 1
  • Elisa Sajaroff
    • 1
  • Marcella Sarzotti-Kelsoe
    • 2
    • 3
  1. 1.Department of PediatricsDuke University Medical CenterDurhamUSA
  2. 2.Department of ImmunologyDuke University Medical CenterDurhamUSA
  3. 3.Department of SurgeryDuke University Medical CenterDurhamUSA
  4. 4.Department of Biostatistics and BioinformaticsDuke University Medical CenterDurhamUSA

Personalised recommendations