Journal of Clinical Immunology

, Volume 32, Issue 6, pp 1409–1414 | Cite as

Matrix Metalloproteinases: A Review of Their Structure and Role in Systemic Sclerosis

  • Wen-jia Peng
  • Jun-wei Yan
  • Ya-nan Wan
  • Bing-xiang Wang
  • Jin-hui Tao
  • Guo-jun Yang
  • Hai-feng Pan
  • Jing Wang


Matrix metalloproteinases (MMPs) are the main enzymes involved in arterial wall extracellular matrix (ECM) degradation and remodeling, whose activity has been involved in various normal and pathologic processes, such as inflammation, fibrosis. As a result, the MMPs have come to consider as both therapeutic targets and diagnostic tools for the treatment and diagnosis of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Systemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by an excessive over-production of collagen and other ECM, resulting in skin thickening and fibrosis of internal organs. In recent years, abnormal expression of MMPs has been demonstrated with the pathogenesis of SSc, and the association of different polymorphisms on MMPs genes with SSc has been extensively studied. This review describes the structure, function and regulation of MMPs and shortly summarizes current understanding on experimental findings, genetic associations of MMPs in SSc.


Matrix metalloproteinase inhibitor inflammatory fibrosis systemic sclerosis 



This work was partly supported by grants from the Academic Leader Foundation of Anhui Medical University and the Key Project of the Education Department of Anhui Province Natural Science Research (Code: KJ2012A165).

Conflict of Interest



  1. 1.
    Gilliam AC. Scleroderma. Curr Dir Autoimmun. 2008;10:258–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Randone SB, Guiducci S, Cerinic MM. Systemic sclerosis and infections. Autoimmun Rev. 2008;8:36–40.PubMedCrossRefGoogle Scholar
  3. 3.
    LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vivo. J Clin Invest. 1974;54:880–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Uitto J, Bauer EA, Eisen AZ. Scleroderma: increased biosynthesis of triple-helical type I and type III procollagens associated with unaltered expression of collagenase by skin fibroblasts. J Clin Invest. 1979;64:921–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Peltonen J, Kahari L, Uitto J, Jimenez SA. Increased expression of type VI collagen genes in systemic sclerosis. Arthritis Rheum. 1990;33:1829–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Kuroda K, Shinkai H. Gene expression of types I and III collagen, decorin, matrix metalloproteinases and tissue inhibitors of metallopro-teinases in skin fibroblasts from patients with systemic sclerosis. Arch Dermatol Res. 1997;289:567–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Fleischmajer R, Perlish JS, Krieg T, Trimpl R. Variability in collagen and fibronectin synthesis by scleroderma fibroblasts in primary culture. J Invest Dermatol. 1981;76:400–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A. Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets. 2009;10:1245–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Szarvas T, vom Dorp F, Ergün S, Rübben H, vom Dorp F, Ergün S. Matrix metalloproteinases and their clinical relevance in urinary bladder cancer. Nat Rev Urol. 2011;8:241–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Amălinei C, Căruntu ID, Giuşcă SE, Bălan RA. Matrix metalloproteinases involvement in pathologic conditions. Rom J Morphol Embryol. 2010;51:215–28.PubMedGoogle Scholar
  11. 11.
    Nagase H, Woessner Jr JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Bode W, Maskos K. Structural studies on MMPs and TIMPs. Methods Mol Biol. 2001;151:45–77.PubMedGoogle Scholar
  13. 13.
    Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997;378:151–60.PubMedGoogle Scholar
  14. 14.
    Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.PubMedCrossRefGoogle Scholar
  15. 15.
    Gaggar A, Hector A, Bratcher PE, Mall MA, Griese M, Hartl D. The role of matrix metalloproteinases in cystic fibrosis lung disease. Eur Respir J. 2011;38:721–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad and the ugly. Circ Res. 2002;90:251–62.PubMedGoogle Scholar
  17. 17.
    Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol. 2007;211:19–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803:3–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Hozumi A, Nishimura Y, Nishiuma T, Kotani Y, Yokoyama M. Induction of MMP-9 in normal human bronchial epithelial cells by TNF-alpha via NF-kappa B-mediated pathway. Am J Physiol Lung Cell Mol Physiol. 2001;281:L1444–52.PubMedGoogle Scholar
  20. 20.
    Alper O, Bergmann-Leitner ES, Bennett TA, Hacker NF, Stromberg K, Stetler-Stevenson WG. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J Natl Cancer Inst. 2001;93:1375–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Mengshol JA, Vincenti MP, Brinckerhoff CE. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 2001;29:4361–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Rouis M. Matrix metalloproteinases: a potential therapeutic target in atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:541–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Wart HE, Birkeda-Hansenl H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA. 1990;87:5578–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Beaudeux JL, Giral P, Bruckert E, Foglietti MJ, Chapman MJ. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med. 2004;42:121–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Hulboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 1997;3:27–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Cruz-Munoz W, Khokha R. The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci. 2008;45:291–338.PubMedCrossRefGoogle Scholar
  28. 28.
    Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res. 2003;59:812–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leuk Biol. 2007;82:1375–81.CrossRefGoogle Scholar
  30. 30.
    McGuire JK, Manicorne AM. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19:34–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cell. Nature. 1997;385:729–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Ito A, Mukaiyama A, Itoh H, Nagase H, Thorgersen IB, Enghild JJ, et al. Degradation of interleukin 1 beta by matrix metalloproteinases. J Biol Chem. 1996;271:14657–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010;37:11–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Uitto J, Kouba D. Cytokine modulation of extracellular matrix gene expression: relevance to fibrotic skin diseases. J Dermatol Sci. 2001;24 Suppl 1:S60–9.Google Scholar
  35. 35.
    Iimuro Y, Brenner DA. Matrix metalloproteinase gene delivery for liver fibrosis. Pharm Res. 2008;25:249–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Betsuyaku T, Fukuda Y, Parks WC, Shipley JM, Senior RM. Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. Am J Pathol. 2000;157:525–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Vaillant B, Chiaramonte MG, Cheever AW, Soloway PD, Wynn TA. Regulation of hepatic fibrosis and extracellular matrix genes by the Th response: new insight into the role of tissue inhibitors of matrix metalloproteinases. J Immunol. 2001;167:7017–26.PubMedGoogle Scholar
  38. 38.
    Pardo A, Ruiz V, Arreola JL, Ramirez R, Cisneros-Lira J, Gaxiola M, et al. Bleomycin-induced pulmonary fibrosis is attenuated in gamma-glutamyl transpeptidase-deficient mice. Am J Respir Crit Care Med. 2003;167:925–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Ruiz V, Ordóñez RM, Berumen J, Ramírez R, Uhal B, Becerril C, et al. Unbalanced collagenases/TIMP-1 expression and epithelial apoptosis in experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2003;285:L1026–36.PubMedGoogle Scholar
  40. 40.
    Selman M, Ruiz V, Cabrera S, Segura L, Ramírez R, Barrios R, et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol. 2000;279:L562–74.PubMedGoogle Scholar
  41. 41.
    Asano Y, Ihn H, Kubo M, Jinnin M, Mimura Y, Ashida R, et al. Clinical significance of serum levels of matrix metalloproteinase-13 in patients with systemic sclerosis. Rheumatology (Oxford). 2006;45:303–7.CrossRefGoogle Scholar
  42. 42.
    Kim WU, Min SY, Cho ML, Hong KH, Shin YJ, Park SH, et al. Elevated matrix metalloproteinase-9 in patients with systemic sclerosis. Arthritis Res Ther. 2005;7:R71–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Andersen GN, Nilsson K, Pourazar J, Hackett TL, Kazzam E, Blomberg A, et al. Bronchoalveolar matrix metalloproteinase 9 relates to restrictive lung function impairment in systemic sclerosis. Respir Med. 2007;101:2199–206.PubMedCrossRefGoogle Scholar
  44. 44.
    Moinzadeh P, Krieg T, Hellmich M, Brinckmann J, Neumann E, Müller-Ladner U, et al. Elevated MMP-7 levels in patients with systemic sclerosis: correlation with pulmonary involvement. Exp Dermatol. 2011;20:770–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Manetti M, Guiducci S, Romano E, Bellando-Randone S, Conforti ML, Ibba-Manneschi L, et al. Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann Rheum Dis. 2012;71:1064–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Kikuchi K, Kubo M, Hoashi T, Tamaki K. Decreased MMP-9 activity in the serum of patients with diffuse cutaneous systemic sclerosis. Clin Exp Dermatol. 2002;27:301–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Marasini B, Casari S, Zeni S, Turri O, Biondi ML. Stromelysin promoter polymorphism is associated with systemic sclerosis. Rheumatology (Oxford). 2001;40:475–6.CrossRefGoogle Scholar
  48. 48.
    Manetti M, Ibba-Manneschi L, Fatini C, Guiducci S, Cuomo G, Bonino C, et al. Association of a functional polymorphism in the matrix metalloproteinase-12 promoter region with systemic sclerosis in an Italian population. J Rheumatol. 2010;37:1852–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Wipff J, Dieude P, Avouac J, Tiev K, Hachulla E, Cracowski JL, et al. Association of metalloproteinase gene polymorphisms with systemic sclerosis in the European Caucasian population. J Rheumatol. 2010;37:599–602.PubMedCrossRefGoogle Scholar
  50. 50.
    Skarmoutsou E, D’Amico F, Marchini M, Stivala F, Malaponte G, Scorza R, et al. Analysis of matrix metalloproteinase-9 gene polymorphism -1562 C/T in patients suffering from systemic sclerosis with and without ulcers. Int J Mol Med. 2011;27:873–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Johnson RW, Reveille JD, McNearney T, Fischbach M, Friedman AW, Ahn C, et al. Lack of association of a functionally relevant single nucleotide polymorphism of matrix metalloproteinase-1 promoter with systemic sclerosis (scleroderma). Genes Immun. 2001;2:273–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Joung CI, Na YI, Shin ES, Sung YK, Yoo DH, Jun JB. The single nucleotide polymorphisms of matrix metalloproteinase-1 in patients with systemic sclerosis. Rheumatol Int. 2008;28:1183–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Indelicato M, Chiarenza V, Libra M, Malaponte G, Bevelacqua V, Marchini M, et al. Analysis of TIMP-1 gene polymorphisms in Italian sclerodermic patients. J Clin Lab Anal. 2006;20:173–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Sato S, Hayakawa I, Hasegawa M, Fujimoto M, Takehara K. Function blocking autoantibodies against matrix metalloproteinase-1 in patients with systemic sclerosis. J Invest Dermatol. 2003;120:542–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Nishijima C, Hayakawa I, Matsushita T, Komura K, Hasegawa M, Takehara K, et al. Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis. Clin Exp Immunol. 2004;138:357–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Serratì S, Cinelli M, Margheri F, Guiducci S, Del Rosso A, Pucci M, et al. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J Pathol. 2006;210:240–8.PubMedCrossRefGoogle Scholar
  57. 57.
    D’Alessio S, Fibbi G, Cinelli M, Guiducci S, Del Rosso A, Margheri F, et al. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004;50:3275–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Margheri F, Manetti M, Serratì S, Nosi D, Pucci M, Matucci-Cerinic M, et al. Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, beta2 integrin-mediated connection with actin cytoskeleton in human microvascular endothelial cells: failure of association in systemic sclerosis endothelial cells. Arthritis Rheum. 2006;54:3926–38.PubMedCrossRefGoogle Scholar
  59. 59.
    Au K, Khanna D, Clements PJ, Furst DE, Tashkin DP. Current concepts in disease-modifying therapy for systemic sclerosis-associated interstitial lung disease: lessons from clinical trials. Curr Rheumatol Rep. 2009;11:111–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wen-jia Peng
    • 1
  • Jun-wei Yan
    • 1
  • Ya-nan Wan
    • 1
  • Bing-xiang Wang
    • 1
  • Jin-hui Tao
    • 2
  • Guo-jun Yang
    • 2
  • Hai-feng Pan
    • 1
  • Jing Wang
    • 1
  1. 1.Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiPeople’s Republic of China
  2. 2.Department of RheumatologyAnhui Provincial HospitalHefeiChina

Personalised recommendations