Journal of Clinical Immunology

, Volume 32, Issue 5, pp 1038–1047 | Cite as

Tyrphostin AG490 Agent Modestly but Significantly Prevents Onset of Type 1 in NOD Mouse; Implication of Immunologic and Metabolic Effects of a Jak-Stat Pathway Inhibitor

  • Abdoreza Davoodi-Semiromi
  • Azadeh Hassanzadeh
  • Clive H. Wasserfall
  • Andrew Droney
  • Mark Atkinson


Previously, we have reported that the Jak-Stat signaling pathway is defective in NOD mice. In this study, prediabetic female NOD mice (4 weeks) were treated by intraperitoneal injection either with AG490 or DMSO three times per week for 4 consecutive weeks, followed by once a week for an additional 6 weeks. The onset of diabetes was attenuated in NOD mice treated with AG490 relative to DMSO treated control mice (p < 0.02). From an immunological standpoint, AG490 induced the expression of Foxp3 in CD4+CD25 T-cells and down-regulated expression of co-stimulatory molecules in dendritic cells (DC) both in vitro and in vivo. AG490 treated CD4+CD25− T-cells and DC in vitro, acquired regulatory functions; namely, the ability to suppress proliferation of a responding cell population in vitro. AG490 treatment resulted in significant reduction of blood glucose values and increased expression of PPARγ in splenocytes and markedly increased expression PPARγ2 but not PPARγ1 in adipocyte in vitro. Presence of multiple Stat5 DNA binding consensus sequences within the promoter region of the PPARγ gene in human and in mouse suggests that PPARγ is downstream to the Jak-Stat signaling pathway. This study highlights a critical role of the Jak-Stat signaling pathway in the pathogenesis of T1D and suggests that blocking the Jak-Stat signaling pathway by AG490 as a tyrosine kinase inhibitor may provide an effective means for preventing autoimmune T1D via both immunological and metabolic effects.


Type 1 diabetes tyrosine kinase inhibitor AG490 regulatory T-cell NOD 



This work was supported by Juvenile Diabetes Research Foundation International (JDRFI) (JDRF#5-2006-937) and by NIH grant, The American Recovery And Reinvestment Act, (R21AI076394) awarded to ADS.


The authors have no financial conflicts of interest.

Supplementary material

10875_2012_9707_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)


  1. 1.
    Augstein P, Dunger A, Heinke P, Wachlin G, Berg S, Hehmke B, Salzsieder E. Prevention of autoimmune diabetes in NOD mice by troglitazone is associated with modulation of ICAM-1 expression on pancreatic islet cells and IFN-gamma expression in splenic T cells. Biochem Biophys Res Commun. 2003;304:378–84.PubMedCrossRefGoogle Scholar
  2. 2.
    Baselga J. Targeting tyrosine kinases in cancer: the second wave. Science. 2006;312:1175–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Beales PE, Liddi R, Giorgini AE, Signore A, Procaccini E, Batchelor K, Pozzilli P. Troglitazone prevents insulin dependent diabetes in the non-obese diabetic mouse. Eur J Pharmacol. 1998;357:221–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Behbod F, Erwin-Cohen RA, Wang ME, Trawick BW, Qu X, Verani R, Kahan BD, Stepkowski SM, Kirken RA. Concomitant inhibition of Janus kinase 3 and calcineurin-dependent signaling pathways synergistically prolongs the survival of rat heart allografts. J Immunol. 2001;166:3724–32.PubMedGoogle Scholar
  5. 5.
    Bright JJ, Du C, Sriram S. Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J Immunol. 1999;162:6255–62.PubMedGoogle Scholar
  6. 6.
    Burdelya L, Catlett-Falcone R, Levitzki A, Cheng F, Mora LB, Sotomayor E, Coppola D, Sun J, Sebti S, Dalton WS, Jove R, Yu H. Combination therapy with AG-490 and interleukin 12 achieves greater antitumor effects than either agent alone. Mol Cancer Ther. 2002;1:893–9.PubMedGoogle Scholar
  7. 7.
    Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH, Rizzuti BJ, Sawyer PS, Perry BD, Brissette WH, McCurdy SP, Kudlacz EM, Conklyn MJ, Elliott EA, Koslov ER, Fisher MB, Strelevitz TJ, Yoon K, Whipple DA, Sun J, Munchhof MJ, Doty JL, Casavant JM, Blumenkopf TA, Hines M, Brown MF, Lillie BM, Subramanyam C, Shang-Poa C, Milici AJ, Beckius GE, Moyer JD, Su C, Woodworth TG, Gaweco AS, Beals CR, Littman BH, Fisher DA, Smith JF, Zagouras P, Magna HA, Saltarelli MJ, Johnson KS, Nelms LF, Des Etages SG, Hayes LS, Kawabata TT, Finco-Kent D, Baker DL, Larson M, Si MS, Paniagua R, Higgins J, Holm B, Reitz B, Zhou YJ, Morris RE, O’Shea JJ, Borie DC. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science. 2003;302:875–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A, Chavali S, Kumar MV, Prakash S, Dwivedi OP, Ghosh S, Yajnik CS, Tandon N, Bharadwaj D, Chandak GR. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes. 2010;59:2068–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Constantin G, Brocke S, Izikson A, Laudanna C, Butcher EC. Tyrphostin AG490, a tyrosine kinase inhibitor, blocks actively induced experimental autoimmune encephalomyelitis. Eur J Immunol. 1998;28:3523–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Constantin G, Laudanna C, Brocke S, Butcher EC. Inhibition of experimental autoimmune encephalomyelitis by a tyrosine kinase inhibitor. J Immunol. 1999;162:1144–9.PubMedGoogle Scholar
  11. 11.
    Crespo O, Kang SC, Daneman R, Lindstrom TM, Ho PP, Sobel RA, Steinman L, Robinson WH. Tyrosine kinase inhibitors ameliorate autoimmune encephalomyelitis in a mouse model of multiple sclerosis. J. Clin. Immunol. 2011Google Scholar
  12. 12.
    Davoodi-Semiromi A, Laloraya M, Kumar GP, Purohit S, Jha RK, She JX. A mutant Stat5b with weaker DNA binding affinity defines a key defective pathway in nonobese diabetic mice. J Biol Chem. 2004;279:11553–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Davoodi-Semiromi A, McDuffie M, Litherland S, Clare-Salzler M. Truncated pStat5B is associated with the Idd4 locus in NOD mice. Biochem Biophys Res Commun. 2007;11;356(3):655–61.Google Scholar
  14. 14.
    Davoodi-Semiromi A, Cheikhi A, Xia C, Litherland S, Clare-Salzler M. Modulation of CD4+Foxp3- T-cells with a JAK-STAT5 kinase inhibitor. J Immunol. 2007;178:S237–c.Google Scholar
  15. 15.
    Davoodi-Semiromi A, Copper-DeHoff R. Note to readers on: long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats. Biochem. Pharmacol. Biochem Pharmacol. 2012;15;83(6):821.Google Scholar
  16. 16.
    Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20:284–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C, Nissen MH, Ropke C, Wasik MA, Odum N. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001;15:787–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer-Posovszky P, Newell FS, Wabitsch M, Tornqvist HE. Human SGBS cells - a unique tool for studies of human fat cell biology. Obes Facts. 2008;1:184–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, Warner JD, Tanaka M, Steward-Tharp SM, Gadina M, Thomas CJ, Minnerly JC, Storer CE, LaBranche TP, Radi ZA, Dowty ME, Head RD, Meyer DM, Kishore N, O’Shea JJ. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186:4234–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Goncalves S, Fernandez-Sanchez R, Sanchez-Nino MD, Tejedor A, Neria F, Egido J, Ruiz-Ortega M, Ortiz A. Tyrphostins as potential therapeutic agents for acute kidney injury. Curr Med Chem. 2010;17:974–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Hagerkvist R, Sandler S, Mokhtari D, Welsh N. Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J. 2007;21:618–28.PubMedCrossRefGoogle Scholar
  22. 22.
    Higuchi T, Shiraishi T, Shirakusa T, Hirayama S, Shibaguchi H, Kuroki M, Hiratuka M, Yamamoto S, Iwasaki A, Kuroki M. Prevention of acute lung allograft rejection in rat by the janus kinase 3 inhibitor, tyrphostin AG490. J Heart Lung Transplant. 2005;24:1557–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Jabbour E, Deininger M, Hochhaus A. Management of adverse events associated with tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia. 2011;25:201–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Kirken RA, Erwin RA, Taub D, Murphy WJ, Behbod F, Wang L, Pericle F, Farrar WL. Tyrphostin AG-490 inhibits cytokine-mediated JAK3/STAT5a/b signal transduction and cellular proliferation of antigen-activated human T cells. J Leukoc Biol. 1999;65:891–9.PubMedGoogle Scholar
  25. 25.
    Kirken RA, Erwin RA, Wang L, Wang Y, Rui H, Farrar WL. Functional uncoupling of the Janus kinase 3-Stat5 pathway in malignant growth of human T cell leukemia virus type 1-transformed human T cells. J Immunol. 2000;165:5097–104.PubMedGoogle Scholar
  26. 26.
    Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E, Lundeen T, Bonnotte B, Katsanis E. Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol. 2008;181:6955–63.PubMedGoogle Scholar
  27. 27.
    Louvet C, Szot GL, Lang J, Lee MR, Martinier N, Bollag G, Zhu S, Weiss A, Bluestone JA. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2008;105:18895–900.PubMedCrossRefGoogle Scholar
  28. 28.
    Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature. 1996;379:645–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Mokhtari D, Welsh N. Potential utility of small tyrosine kinase inhibitors in the treatment of diabetes. Clin Sci (Lond). 2010;118:241–7.CrossRefGoogle Scholar
  30. 30.
    Raj SM, Howson JM, Walker NM, Cooper JD, Smyth DJ, Field SF, Stevens HE, Todd JA. No association of multiple type 2 diabetes loci with type 1 diabetes. Diabetologia. 2009;52:2109–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Rezende LF, Vieira AS, Negro A, Langone F, Boschero AC. Ciliary neurotrophic factor (CNTF) signals through STAT3-SOCS3 pathway and protects rat pancreatic islets from cytokine-induced apoptosis. Cytokine. 2009;46:65–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med. 1998;339:953–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, Ovaa H, Ploegh HL, Coyle AJ, Rajewsky K. Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci U S A. 2004;101:4566–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Sidhu M, Cotoner CA, Guleng B, Arihiro S, Chang S, Duncan KW, Ajami AM, Chau M, Reinecker HC. Small molecule tyrosine kinase inhibitors for the treatment of intestinal inflammation. Inflamm. Bowel. Dis. 2011Google Scholar
  35. 35.
    Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 2008;9:194–202.PubMedCrossRefGoogle Scholar
  36. 36.
    Wabitsch M, Brenner RE, Melzner I, Braun M, Moller P, Heinze E, Debatin KM, Hauner H. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes Relat Metab Disord. 2001;25:8–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Winkler C, Raab J, Grallert H, Ziegler AG. Lack of association of type 2 diabetes susceptibility genotypes and body weight on the development of islet autoimmunity and type 1 diabetes. PLoS One. 2012;7:e35410.PubMedCrossRefGoogle Scholar
  38. 38.
    Yaacob NS, Kaderi MA, Norazmi MN. Differential transcriptional expression of PPARalpha, PPARgamma1, and PPARgamma2 in the peritoneal macrophages and T-cell subsets of non-obese diabetic mice. J Clin Immunol. 2009;29:595–602.PubMedCrossRefGoogle Scholar
  39. 39.
    Yap TA, Vidal L, Adam J, Stephens P, Spicer J, Shaw H, Ang J, Temple G, Bell S, Shahidi M, Uttenreuther-Fischer M, Stopfer P, Futreal A, Calvert H, de Bono JS, Plummer R. Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J Clin Oncol. 2010;28:3965–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang F, Zhang Q, Tengholm A, Sjoholm A. Involvement of JAK2 and Src kinase tyrosine phosphorylation in human growth hormone-stimulated increases in cytosolic free Ca2+ and insulin secretion. Am J Physiol Cell Physiol. 2006;291:C466–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Abdoreza Davoodi-Semiromi
    • 1
    • 3
  • Azadeh Hassanzadeh
    • 1
  • Clive H. Wasserfall
    • 2
  • Andrew Droney
    • 1
  • Mark Atkinson
    • 2
  1. 1.Department of Pharmacotherapy and Translational ResearchCollege of PharmacyGainesvilleUSA
  2. 2.Department of Pathology, Immunology and Laboratory Medicine, College of MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Brain Endowment Bank, Department of Neurology, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations