Journal of Clinical Immunology

, Volume 31, Issue 6, pp 985–997 | Cite as

Cardiac Autoantibodies from Patients Affected by a New Variant of Endemic Pemphigus Foliaceus in Colombia, South America

  • Ana Maria Abreu-Velez
  • Michael S. Howard
  • Zhe Jiao
  • Weiqing Gao
  • Hong Yi
  • Hans E. Grossniklaus
  • Mauricio Duque-Ramírez
  • Samuel C. DudleyJr.


Several patients affected by a new variant of endemic pemphigus foliaceus in El Bagre, Colombia (El Bagre-EPF) have experienced a sudden death syndrome, including persons below the age of 50. El Bagre-EPF patients share several autoantigens with paraneoplastic pemphigus patients, such as reactivity to plakins. Further, paraneoplastic pemphigus patients have autoantibodies to the heart. Therefore, we tested 15 El Bagre-EPF patients and 15 controls from the endemic area for autoreactivity to heart tissue using direct and indirect immunofluorescence, confocal microscopy, immunohistochemistry, immunoblotting, and immunoelectron microscopy utilizing heart extracts as antigens. We found that 7 of 15 El Bagre patients exhibited a polyclonal immune response to several cell junctions of the heart, often colocalizing with known markers. These colocalizing markers included those for the area composita of the heart, such as anti-desmoplakins I and II; markers for gap junctions, such as connexin 43; markers for tight junctions, such as ezrin and junctional adhesion molecule A; and adherens junctions, such pan-cadherin. We also detected colocalization of the patient antibodies within blood vessels, Purkinje fibers, and cardiac sarcomeres. We conclude that El Bagre-EPF patients display autoreactivity to multiple cardiac epitopes, that this disease may resemble what is found in patients with rheumatic carditis, and further, that the cardiac pathophysiology of this disorder warrants further evaluation.


Heart area composita plakins cell junctions endemic pemphigus foliaceus autoimmunity 



Basement membrane zone


Endemic pemphigus foliaceus

El Bagre-EPF

El Bagre endemic pemphigus foliaceus


Intercellular staining between keratinocytes




Direct immunofluorescence


Indirect immunofluorescence


Transverse tubule system


Immunoelectron microscopy


Hematoxylin and eosin


Arrhythmogenic right ventricular cardiomyopathy


Funding Sources

This study was supported by Georgia Dermatopathology Associates, Atlanta, Georgia, USA (MSH). The El Bagre-EPF samples were collected through previous grants from the University of Antioquia, the Embassy of Japan in Colombia, the Mineros de Antioquia SA, DSSA, the Hospital Nuestra Senora del Carmen, all in Medellin, Colombia, South America (AMAV). H & E, IHC, DIF, IIF, and IEM studies were funded by Georgia Dermatopathology Associates (MSH and AMAV). Confocal studies were performed with funds from the Department of Ophthalmology, Emory University Medical Center, Atlanta, Georgia, USA (HG) (NIH NEI EY06360) and P01 HL058000 from (SCD).

Conflict of Interest



  1. 1.
    Abréu-Vélez AM, Beutner EH, Montoya F, Bollag WB, Hashimoto T. Analyses of autoantigens in a new form of endemic pemphigus foliaceus in Colombia. J Am Acad Dermatol. 2003;49:609–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Abréu-Vélez AM, Hashimoto T, Bollag WB, et al. A unique form of endemic pemphigus in Northern Colombia. J Am Acad Dermatol. 2003;4:599–608.CrossRefGoogle Scholar
  3. 3.
    Hisamatsu Y, Abreu Velez AM, Amagai M, Ogawa MM, Kanzaki T, Hashimoto T. Comparative study of autoantigen profile between Colombian and Brazilian types of endemic pemphigus foliaceus by various biochemical and molecular biological techniques. J Dermatol Sci. 2003;32:33–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Sehgal VN, Srivastava G. Paraneoplastic pemphigus/paraneoplastic autoimmune multiorgan syndrome. Int J Dermatol. 2009;48:162–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Mahoney MG, Aho S, Uitto J, Stanley JR. The members of the plakin family of proteins recognized by paraneoplastic pemphigus antibodies include periplakin. J Invest Dermatol. 1998;111:308–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Anhalt GJ, Kim SC, Stanley JR, et al. Paraneoplastic pemphigus. An autoimmune mucocutaneous disease associated with neoplasia. N Engl J Med. 1990;323:1729–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Howard MS, Yepes MM, Maldonado-Estrada JG, et al. Broad histopathologic patterns of non-glabrous skin and glabrous skin from patients with a new variant of endemic pemphigus foliaceus—part 1. J Cutan Pathol. 2010;37:222–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Abreu-Velez A, Javier Patino P, Montoya F, Bollag W. The tryptic cleavage product of the mature form of the bovine desmoglein 1 ectodomain is one of the antigen moieties immunoprecipitated by all sera from symptomatic patients affected by a new variant of endemic pemphigus. Eur J Dermatol. 2003;4:359–66.Google Scholar
  9. 9.
    Abréu-Vélez AM, Yepes MM, Patiño PJ, Bollag WB, Montoya Sr F. A cost-effective, sensitive and specific enzyme linked immunosorbent assay useful for detecting a heterogeneous antibody population in sera from people suffering a new variant of endemic pemphigus. Arch Dermatol Res. 2004;295:434–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Abreu Velez AM, Howard MS, Hashimoto T. Palm tissue displaying a polyclonal autoimmune response in patients affected by a new variant of endemic pemphigus foliaceus in Colombia, South America. Eur J Dermatol. 2010;20:74–81.PubMedGoogle Scholar
  11. 11.
    Nussinovitch U, Shoenfeld Y. The diagnostic and clinical significance of anti-muscarinic receptor autoantibodies. Clin Rev Allergy Immunol. 2011 (in press).Google Scholar
  12. 12.
    Malnick SD, Bar-Ilan A, Goland S, Somin M, Doniger T, Basevitz A, et al. Perimyocarditis following streptococcal group A infection: from clinical cases to bioinformatics analysis. Eur J Intern Med. 2010;21:354–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Bolling MC, Jonkman MF. Skin and heart: une liaison dangereuse. Exp Dermatol. 2009;18:658–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol. 2006;85:469–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates—IV: coalescence and amalgamation of desmosomal and adhaerens junction components—late processes in mammalian heart development. Eur J Cell Biol. 2007;86:377–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Milingou M, Wood P, Masouyé I, et al. The palmoplantar keratodermas: much more than palms and soles. Mol Med Today. 1999;5:107–13.CrossRefGoogle Scholar
  17. 17.
    Barber AG, Wajid M, Columbo M, Lubetkin J, Christiano AM. Striate palmoplantar keratoderma resulting from a frameshift mutation in the desmoglein 1 gene. J Dermatol Sci. 2007;45:161–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Kelsell DP, Stevens HP. The palmoplantar keratodermas: much more than palms and soles. Mol Med Today. 1999;5:107–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Wan H, Dopping-Hepenstal PJ, Gratian MJ, et al. Striate palmoplantar keratoderma arising from desmoplakin and desmoglein 1 mutations is associated with contrasting perturbations of desmosomes and the keratin filament network. Br J Dermatol. 2004;150:878–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Abreu-Velez AM, Howard MS, Yi H, Gao W, Hashimoto T, Grossniklaus HE. Neural system antigens are recognized by autoantibodies from patients affected by a new variant of endemic pemphigus foliaceus in Colombia. J Clin Immunol. 2011;31(3):356–68.PubMedCrossRefGoogle Scholar
  21. 21.
    Abreu-Velez AM, Villa-Robles E, Howard MS. A new variant of endemic pemphigus foliaceus in El-Bagre, Colombia: the Hardy–Weinberg–Castle law and linked short tandem repeats. North Am J Med Sci. 2009;1:169–79.Google Scholar
  22. 22.
    Perriard JC, Hirschy A, Ehler E. Dilated cardiomyopathy: a disease of the intercalated disc? Trends Cardiovasc Med. 2003;13:30–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Awad MM, Calkins H, Judge DP. Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat Clin Pract Cardiovasc Med. 2008;5:258–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Oxford EM, Musa H, Maass K, Coombs W, Taffet SM, Delmar M. Connexin 43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ Res. 2007;101:703–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Leung CL, Zheng M, Prater SM, Liem RK. The BPAG1 locus: alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol. 2001;154:691–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Leung CL, Sun D, Zheng M, Knowles DR, Liem RK. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol. 1999;147:1275–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Leung CL, Sun D, Zheng M, Knowles DR, Liem RK. The intermediate filament protein peripherin is the specific interaction partner of mouse BPAG1-n (dystonin) in neurons. J Cell Biol. 1999;144:435–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Ideker RE, Kong W, Pogwizd S. Purkinje fibers and arrhythmias. Pacing Clin Electrophysiol. 2009;32:283–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Obbiassi M, Brucato A, Meroni PL, et al. Antibodies to cardiac Purkinje cells: further characterization in autoimmune diseases and atrioventricular heart block. Clin Immunol Immunopathol. 1987;42:141–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Forssmann GF, Girardier L. A study of the T system in rat heart. J Cell Biol. 1970;44:1–19.PubMedCrossRefGoogle Scholar
  31. 31.
    Lorber V, Rayns DG. Cellular junctions in the tunicate heart. J Cell Sci. 1972;10:211–27.PubMedGoogle Scholar
  32. 32.
    Soeller C, Cannell MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Cir Res. 1999;84:266–75.Google Scholar
  33. 33.
    Nelson DA, Benson ES. On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J Cell Biol. 1963;16:297–313.PubMedCrossRefGoogle Scholar
  34. 34.
    Takeuchi S, Takagishi Y, Yasui K, Murata Y, Toyama J, Kodama I. Voltage-gated K+ channel, Kv4.2, localizes predominantly to the transverse–axial tubular system of the rat myocyte. J Mol Cell Cardiol. 2000;32:1361–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Arnaout MS, Dimasi A, Harb R, Alam S. Unusual thrombotic cardiac complications of pemphigus vulgaris: a new link? J Thromb Thrombolysis. 2007;23:237–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Chorzelski T, Kuch J. Anticardiac antibodies and “pemphigus” autoantibodies in a patient with pemphigus and myocardial infarction. Pol Arch Med Wewn. 1968;41:825–30.PubMedGoogle Scholar
  37. 37.
    Gheorghe E, Adumitresi C, Botnarciuc M, Manea M. Histochemical study of the skin affected by certain autoimmune diseases. Rom J Morphol Embryol. 2005;46:73–8.PubMedGoogle Scholar
  38. 38.
    Marchenko S, Chernyavsky AI, Arredondo J, Gindi V, Grando SA. Antimitochondrial autoantibodies in pemphigus vulgaris: a missing link in disease pathophysiology. J Biol Chem. 2010;285:3695–704.PubMedCrossRefGoogle Scholar
  39. 39.
    Nussinovitch U, Shoenfeld Y. Anti-tropopin autoantibodies and the cardiovascular system. Heart. 2010;96:1518–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Nussinovitch U, Shoenfeld Y. The clinical significance of anti-beta-1 adrenergic receptor autoantibodies in cardiac disease. Clin Rev Allerg Immunol. 2011 (in press).Google Scholar
  41. 41.
    Földvári F, Baló J, Márton C. Anatomical-pathologic report of autopsies of 62 cases of pemphigus. Przegl Dermatol. 1967;54:13–6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ana Maria Abreu-Velez
    • 1
  • Michael S. Howard
    • 1
  • Zhe Jiao
    • 2
  • Weiqing Gao
    • 3
  • Hong Yi
    • 4
  • Hans E. Grossniklaus
    • 3
  • Mauricio Duque-Ramírez
    • 5
  • Samuel C. DudleyJr.
    • 6
  1. 1.Georgia Dermatopathology AssociatesAtlantaUSA
  2. 2.Department of CardiologyEmory University Medical CenterAtlantaUSA
  3. 3.Department of OphthalmologyEmory University Medical CenterAtlantaUSA
  4. 4.Robert P. Apkarian Integrated Electron Microscopy CoreEmory University Medical CenterAtlantaUSA
  5. 5.Chief Cardiac Electrophysiology Las Americas Clinic, Chief Cardiology General Hospital of Medellin, and Chief Section of CardiologyCESMedellinColombia
  6. 6.Chief Section of CardiologyUniversity of Illinois at Chicago (UIC) Medical CenterChicagoUSA

Personalised recommendations