Journal of Clinical Immunology

, Volume 30, Supplement 1, pp 24–30 | Cite as

Cell Death Modulation by Intravenous Immunoglobulin

  • Stephan von Gunten
  • Hans-Uwe Simon


The induction of cell death in immune cells by naturally occurring antibodies specific for death receptors may present an important antiinflammatory mechanism of intravenous immunoglobulin (IVIG). Conversely, the protection of tissue cells from death receptor-mediated apoptosis by blocking antibodies is thought to contribute to the beneficial effects of IVIG in certain inflammatory disorders such as toxic epidermal necrolysis, also known as Lyell's syndrome. In this review, we focus on recent insights into the role of functional antibodies against Fas, sialic acid-binding immunoglobulin-like lectin (Siglec)-8, and Siglec-9 receptors in IVIG-mediated cell survival or death effects. In addition, we examine a variety of factors in inflammatory disease that may interplay with these cellular events and influence the therapeutic efficacy or potency of IVIG. These involve activation status of the target cell, cytokine microenvironment, pathogenesis and stage of disease, individual genetic determinants, species characteristics, and batch-to-batch variations of IVIG preparations.


Intravenous immunoglobulin IVIG autoimmunity immunoregulation Fas Siglec-8 Siglec-9 



This work was supported by grants from the Swiss National Science Foundation (310000-107526) and CSL Behring AG, Bern, Switzerland. We thank Aldona Liechti for the illustration.


  1. 1.
    Negi VS, Elluru S, Sibéril S, Graff-Dubois S, Mouthon LUC, Kazatchkine MD, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol. 2007;27:233–45.CrossRefPubMedGoogle Scholar
  2. 2.
    Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26:513.CrossRefPubMedGoogle Scholar
  3. 3.
    von Gunten S, Simon HU. Natural anti-Siglec autoantibodies mediate potential immunoregulatory mechanisms: implications for the clinical use of intravenous immunoglobulins (IVIg). Autoimmun Rev. 2008;7:453–6.CrossRefGoogle Scholar
  4. 4.
    Simon HU, Späth PJ. IVIG—mechanisms of action. Allergy. 2003;58:543–52.CrossRefPubMedGoogle Scholar
  5. 5.
    von Gunten S, Smith D, Cummings R, Riedel S, Miescher S, Schaub A, et al. Intravenous immunoglobulin contains a broad repertoire of anti-carbohydrate antibodies that is not restricted to the IgG2 subclass. J Allergy Clin Immunol. 2009;123:1268–76.CrossRefGoogle Scholar
  6. 6.
    Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001;345:747–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Vani J, Elluru S, Negi VS, Lacroix-Desmazes S, Kazatchkine MD, Bayary J, et al. IVIg perspective. Autoimmun Rev. 2008;7:440–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30:180–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Simon HU. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev. 2003;193:101–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Simon HU. Regulation of eosinophil and neutrophil apoptosis—similarities and differences. Immunol Rev. 2001;179:156–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Sprent J, Tough DF. T cell death and memory. Science. 2001;293:245–8.CrossRefPubMedGoogle Scholar
  12. 12.
    von Gunten S, Bochner BS. Expression and function of Siglec-8 in human eosinophils, basophils, and mast cells. In: Pawankar R, Holgate ST, Rosenwasser LJ, editors. Allergy frontiers: classification and pathomechanisms. Tokyo, Japan: Springer; 2009. p. 297–231.Google Scholar
  13. 13.
    von Gunten S, Simon HU. Sialic acid binding immunoglobulin-like lectins may regulate innate immune responses by modulating the life span of granulocytes. FASEB J. 2006;29:601–5.CrossRefGoogle Scholar
  14. 14.
    Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407:784–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Daigle I, Yousefi S, Colonna M, Green DR, Simon HU. Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med. 2002;8:61–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L, Yousefi S, et al. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med. 2008;205:685–98.CrossRefPubMedGoogle Scholar
  17. 17.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356:314–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994;76:969–76.CrossRefPubMedGoogle Scholar
  19. 19.
    Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middelton LA, Lin AY, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81:935–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268:1347–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282:490–3.CrossRefPubMedGoogle Scholar
  22. 22.
    Prasad NK, Papoff G, Zeuner A, Bonnin E, Kazatchkine MD, Ruberti G, et al. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J Immunol. 1998;161:3781–90.PubMedGoogle Scholar
  23. 23.
    Sooryanarayana, Prasad N, Bonnin E, Pashov A, Ben Jilani K, Ameisen JC, et al. Phosphorylation of Bcl-2 and mitochondrial changes are associated with apoptosis of lymphoblastoid cells induced by normal immunoglobulin G. Biochem Biophys Res Commun. 1999;264:896–901.CrossRefPubMedGoogle Scholar
  24. 24.
    Altznauer F, von Gunten S, Späth P, Simon HU. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J Allergy Clin Immunol. 2003;112:1185–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Reipert BM, Stellamor MT, Poell M, Ilas J, Sasgary M, Reipert S, et al. Variation of anti-Fas antibodies in different lots of intravenous immunoglobulin. Vox Sang. 2008;94:334–41.CrossRefPubMedGoogle Scholar
  26. 26.
    Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Kehrl JH, et al. Siglecs: a family of sialic-acid binding lectins. Glycobiology. 1998;8:v–vi.PubMedGoogle Scholar
  27. 27.
    von Gunten S, Bochner BS. Basic and clinical immunology of Siglecs. Ann N Y Acad Sci. 2008;1143:61–82.CrossRefGoogle Scholar
  28. 28.
    Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66.CrossRefPubMedGoogle Scholar
  29. 29.
    Varki A, Angata T. Siglecs—the major subfamily of I-type lectins. Glycobiology. 2006;16:1R–27R.CrossRefPubMedGoogle Scholar
  30. 30.
    O'Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell–mediated disease. Trends Pharmacol Sci. 2009;30:240–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A. Loss of Siglec expression on T lymphocytes during human evolution. PNAS. 2006;103:7765–70.Google Scholar
  32. 32.
    Varki A. Glycan-based interactions involving vertebrate sialic-acid–recognizing proteins. Nature. 2007;446:1023–9.CrossRefPubMedGoogle Scholar
  33. 33.
    von Gunten S, Yousefi S, Seitz M, Jakob SM, Schaffner T, Seger R, et al. Siglec-9 transduces apoptotic and non-apoptotic death signals into neutrophils depending on the pro-inflammatory cytokine environment. Blood. 2005;106:1423–31.CrossRefGoogle Scholar
  34. 34.
    Rashmi R, Bode BP, Panesar N, King SB, Rudloff JR, Gartner MR, et al. Siglec-9 and SHP-1 are differentially expressed in neonatal and adult neutrophils. Pediatr Res. 2009;66:266–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Guo JP, Nutku E, Yokoi H, Schnaar R, Zimmermann N, Bochner BS. Siglec-8 and Siglec-F: inhibitory receptors on eosinophils and mast cells. Allergy Clin Immunol Int. 2007;19:54–9.CrossRefGoogle Scholar
  36. 36.
    Yokoi H, Choi OH, Hubbard W, Lee HS, Canning BJ, Lee HH, et al. Inhibition of FcepsilonRI-dependent mediator release and calcium flux from human mast cells by sialic acid-binding immunoglobulin-like lectin 8 engagement. J Allergy Clin Immunol. 2008;121:499–505.CrossRefPubMedGoogle Scholar
  37. 37.
    Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood. 2003;101:5014–20.CrossRefPubMedGoogle Scholar
  38. 38.
    Nutku E, Hudson SA, Bochner BS. Mechanism of Siglec-8–induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem Biophys Res Commun. 2005;336:918–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Nutku-Bilir E, Hudson SA, Bochner BS. Interleukin-5 priming of human eosinophils alters Siglec-8 mediated apoptosis pathways. Am J Respir Cell Mol Biol. 2008;38:121–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Simon HU. Molecules involved in the regulation of eosinophil apoptosis. Chem Immunol Allergy. 2006;91:49–58.CrossRefPubMedGoogle Scholar
  41. 41.
    von Gunten S, Vogel M, Schaub A, Stadler BM, Miescher S, Crocker PR, et al. Intravenous immunoglobulin preparations contain anti–Siglec-8 autoantibodies. J Allergy Clin Immunol. 2007;119:1005–11.CrossRefGoogle Scholar
  42. 42.
    Vassina EM, Yousefi S, Simon D, Zwicky C, Conus S, Simon HU. cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur J Immunol. 2006;36:1975–84.CrossRefPubMedGoogle Scholar
  43. 43.
    Plötz SG, Simon HU, Darsow U, Simon D, Vassina E, Yousefi S, et al. Use of an anti–interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med. 2003;349:2334–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Klion AD, Bochner BS, Gleich GJ, Nutman TB, Rothenberg ME, Simon HU, et al. Approaches to the treatment of hypereosinophilic syndromes: a workshop summary report. J Allergy Clin Immunol. 2006;117:1292–302.CrossRefPubMedGoogle Scholar
  45. 45.
    Takigawa N, Kawata N, Shibayama T, Tada A, Kimura G, Munemasa M, et al. Successful treatment of a patient with severe Churg–Strauss syndrome by a combination of pulse corticosteroids, pulse cyclophosphamide, and high-dose intravenous immunoglobulin. J Asthma. 2005;42:639–41.CrossRefPubMedGoogle Scholar
  46. 46.
    Tsurikisawa N, Taniguchi M, Saito H, Himeno H, Ishibashi A, Suzuki S, et al. Treatment of Churg–Strauss syndrome with high-dose intravenous immunoglobulin. Ann Allergy Asthma Immunol. 2004;92:80–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Ikehara Y, Ikehara SK, Paulson JC. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem. 2004;279:43117–25.CrossRefPubMedGoogle Scholar
  48. 48.
    Avril T, Floyd H, Lopez F, Vivier E, Crocker PR. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol. 2004;173:6841–68419.PubMedGoogle Scholar
  49. 49.
    Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood. 2009;113:3333–6.CrossRefPubMedGoogle Scholar
  50. 50.
    von Gunten S, Jakob S, Geering B, Takala J, Simon HU. Different patterns of Siglec-9–mediated neutrophil death responses in septic shock. Shock. 2009;32:386–92.CrossRefGoogle Scholar
  51. 51.
    von Gunten S, Schaub A, Vogel M, Stadler BM, Miescher S, Simon HU. Immunological and functional evidence for anti–Siglec-9 autoantibodies in intravenous immunoglobulin (IVIg) preparations. Blood. 2006;108:4255–9.CrossRefGoogle Scholar
  52. 52.
    Gelfand EW, Winkelstein J. Are all IGIVs the same? J Allergy Clin Immunol. 2002;110:938.CrossRefPubMedGoogle Scholar
  53. 53.
    Lassiter HA, Bibb KW, Bertolone SJ, Patel CC, Stroncek DF. Neonatal immune neutropenia following the administration of intravenous immune globulin. Am J Pediatr Hematol Oncol. 1993;15:120–3.CrossRefPubMedGoogle Scholar
  54. 54.
    Tam DA, Morton LD, Stroncek DF, Leshner RT. Neutropenia in a patient receiving intravenous immune globulin. J Neuroimmunol. 1996;64:175–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Berkovitch M, Dolinski G, Tauber T, Aladjem M, Kaplinsky C. Neutropenia as a complication of intravenous immunoglobulin (IVIG) therapy in children with immune thrombocytopenic purpura: common and non-alarming. Int J Immunopharmacol. 1999;21:411–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Niebanck AE, Kwiatkowski JL, Raffini LJ. Neutropenia following IVIG therapy in pediatric patients with immune-mediated thrombocytopenia. J Pediatr Hematol Oncol. 2005;27:145–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Matsuda M, Hosoda W, Sekijima Y, Hoshi K, Hashimoto T, Itoh S, et al. Neutropenia as a complication of high-dose intravenous immunoglobulin therapy in adult patients with neuroimmunologic disorders. Clin Neuropharmacol. 2003;26:306–11.CrossRefPubMedGoogle Scholar
  58. 58.
    Buenz EJ, Howe CL. Appropriate use of intravenous immunoglobulin in neonatal neutropenia. J Perinatol. 2007;27:196–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Khan S, Dore PC, Sewell WAC. Both patient characteristics and IVIG product-specific mechanisms may affect eosinophils in immunoglobulin-treated Kawasaki disease. Pediatr Allergy Immunol. 2008;19:186–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of PharmacologyUniversity of BernBernSwitzerland

Personalised recommendations