Journal of Clinical Immunology

, Volume 30, Issue 3, pp 373–383 | Cite as

Influenza-Induced Production of Interferon-Alpha is Defective in Geriatric Individuals

  • David H. Canaday
  • Naa Ayele Amponsah
  • Leola Jones
  • Daniel J. Tisch
  • Thomas R. Hornick
  • Lakshmi Ramachandra



The majority of deaths (90%) attributed to influenza are in person’s age 65 or older. Little is known about whether defects in innate immune responses in geriatric individuals contribute to their susceptibility to influenza.


Our aim was to analyze interferon-alpha (IFN-alpha) production in peripheral blood mononuclear cells (PBMCs) isolated from young and geriatric adult donors, stimulated with influenza A or Toll-like receptor (TLR) ligands. IFN-alpha is a signature anti-viral cytokine that also shapes humoral and cell-mediated immune responses.


Geriatric PBMCs produced significantly less IFN-alpha in response to live or inactivated influenza (a TLR7 ligand) but responded normally to CpG ODN (TLR9 ligand) and Guardiquimod (TLR7 ligand). All three ligands activate plasmacytoid dendritic cells (pDCs). While there was a modest decline in pDC frequency in older individuals, there was no defect in uptake of influenza by geriatric pDCs.

Discussion and Conclusion

Influenza-induced production of IFN-alpha was defective in geriatric PBMCs by a mechanism that was independent of reduced pDC frequency or viability, defects in uptake of influenza, inability to secrete IFN-alpha, or defects in TLR7 signaling.


Aging influenza interferon-alpha plasmacytoid dendritic cells 





Coronary artery disease


Chronic obstructive pulmonary disease


Cerebrovascular accident


Dendritic cell




Peripheral blood mononuclear cells


Plasmacytoid DC


Toll-like receptor



This work was supported by AI077056 (to L.R. and D.C), McGregor Fund grant (to D.C) and Veterans Affairs GRECC and CSR&D Merit grant (D.C. and T.H.). Flow cytometry was performed at the CWRU/UH Center for AIDS Research (NIH Grant AI36219). We thank Megan Ermler for assistance with infecting Vero E6 cells, Scott Howell at Visual Sciences Research Center (NIH Grant P30-EY11373) for assistance with microscopy, Gareth Hardy for IFN-beta analysis and Lucy Jury at the Cleveland VA for help procuring blood samples.


  1. 1.
    Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA. 2003;289:179–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Vu T, Farish S, Jenkins M, Kelly H. A meta-analysis of effectiveness of influenza vaccine in persons aged 65 years and over living in the community. Vaccine. 2002;20:1831–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Effros RB. Replicative senescence of CD8 T cells: effect on human ageing. Exp Gerontol. 2004;39:517–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Goronzy JJ, Lee WW, Weyand CM. Aging and T-cell diversity. Exp Gerontol. 2007;42:400–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S. Characterization of naive, memory and effector CD8+ T cells: effect of age. Exp Gerontol. 2004;39:545–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Haynes L, Maue AC. Effects of aging on T cell function. Curr Opin Immunol. 2009;21:414–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Haynes L, Swain SL. Why aging T cells fail: implicatins for vaccination. Immunity. 2006;24(6):663–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Kovaiou RD, Grubeck-Loebenstein B. Age-associated changes within CD4+ T cells. Immunol Lett. 2006;107:8–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Miller RA. The aging immune system: primer and prospectus. Science. 1996;273:70–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Miller RA. Effect of aging in T lymphocyte activation. Vaccine. 2000;18:1654–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Nikolich-Zugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol. 2008;8:512–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957;147:258–67.CrossRefPubMedGoogle Scholar
  13. 13.
    Isaacs A, Lindenmann J, Valentine RC. Virus Interference. II. Some properties of interferon. Proc R Soc Lond B Biol Sci. 1957;147:268–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Hovanessian AG. Interferon-induced and double-standed RNA-acivated enzymes: a specific protein kinase and 2′, 5′ oligoadenylate synthetases. J Interferon Res. 1991;11:199–205.PubMedGoogle Scholar
  15. 15.
    Kerr IM, Brown RE, Ball LA. Increased sensitivity if cell-free protein synthesis to double-stranded RNA after interferon treatment. Nature. 1974;250:57–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Silverman RH. Viral encounters with 2′, 5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol. 2007;81:12720–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008;89:1–47.CrossRefPubMedGoogle Scholar
  18. 18.
    Fonteneau JF, Gilliet M, Larsson M, Dasilva I, Munz C, Liu YJ, et al. Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood. 2003;101:3620–6.CrossRefGoogle Scholar
  19. 19.
    Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202:1131–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:1529–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA. 2004;101:5598–603.CrossRefPubMedGoogle Scholar
  22. 22.
    Krug RM, Shaw M, Broni B, Shapiro G, Haller O. Inhibition of influenza viral mRNA synthesis in cells expressing the interferon-induced Mx gene product. J Virol. 1985;56:201–6.PubMedGoogle Scholar
  23. 23.
    Pavlovic J, Zurcher T, Haller O, Staeheli P. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J Virol. 1990;64:3370–5.PubMedGoogle Scholar
  24. 24.
    Samuel CE. Antiviral actions of interderon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology. 1991;183:1–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med. 1999;189:821–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Masten BJ, Olson GK, Tarleton CA, Rund C, Schuyler M, Mehran R, et al. Characterization of myeloid and plasmacytoid dendritic cells in human lung. J Immunol. 2006;177:7784–93.PubMedGoogle Scholar
  27. 27.
    Tsoumakidou M, Tzanakis N, Papadaki HA, Koutala H, Siafakas NM. Isolation of myeloid and plasmacytoid dendritic cells from human bronchoalveolar lavage fluid. Immunol Cell Biol. 2006;84:267–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Hartmann E, Graefe H, Hopert A, Pries R, Rothenfusser S, Poeck H, et al. Analysis of plasmacytoid and myeloid dendritic cells in nasal epithelium. Clin Vaccine Immunol. 2006;13:1278–86.CrossRefPubMedGoogle Scholar
  29. 29.
    Gill MA, Long K, Kwon T, Muniz L, Mejias A, Connolly J, et al. Differential recruitment of dendritic cells and monocytes to respiratory mucosal sites in children with influenza virus or respiratory syncytial virus infection. J Infect Dis. 2008;198:1667–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Jewell NA, Vaghefi N, Mertz SE, Akter P, Peebles Jr RS, Bakaletz LO, et al. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J Virol. 2007;81:9790–800.CrossRefPubMedGoogle Scholar
  31. 31.
    Lowen AC, Mubareka S, Tumpey TM, Garcia-Sastre A, Palese P. The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci USA. 2006;103:9988–92.CrossRefPubMedGoogle Scholar
  32. 32.
    Matsuoka Y, Lamirande EW, Subbarao K. The ferret model for influenza. Curr Protoc Microbiol. 2009;Chapter 15:unit 15G 12.Google Scholar
  33. 33.
    Tumpey TM, Maines TR, Van Hoeven N, Glaser L, Solorzano A, Pappas C, et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science. 2007;315:655–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Staeheli P, Grob R, Meier E, Sutcliffe JG, Haller O. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol Cell Biol. 1988;8:4518–23.PubMedGoogle Scholar
  35. 35.
    Van Hoeven N, Belser JA, Szretter KJ, Zeng H, Staeheli P, Swayne DE, et al. Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a guinea pig model: antiviral potential of exogenous alpha interferon to reduce virus shedding. J Virol. 2009;83:2851–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Kugel D, Kochs G, Obojes K, Roth J, Kobinger GP, Kobasa D, et al. Intranasal administration of alpha interferon reduces seasonal influenza A virus morbidity in ferrets. J Virol. 2009;83:3843–51.CrossRefPubMedGoogle Scholar
  37. 37.
    Hornung V, Schlender J, Guenthner-Biller M, Rothenfusser S, Endres S, Conzelmann KK, et al. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J Immunol. 2004;173:5935–43.PubMedGoogle Scholar
  38. 38.
    Sandbulte MR, Boon AC, Webby RJ, Riberdy JM. Analysis of cytokine secretion from human plasmacytoid dendritic cells infected with H5N1 or low-pathogenicity influenza viruses. Virology. 2008;381:22–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314:994–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006;314:997–1001.CrossRefPubMedGoogle Scholar
  42. 42.
    Guo Z, Chen LM, Zeng H, Gomez JA, Plowden J, Fujita T, et al. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol. 2007;36:263–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005;23:19–28.CrossRefPubMedGoogle Scholar
  44. 44.
    Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 1998;17:6230–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Yi AK, Peckham DW, Ashman RF, Krieg AM. CpG DNA rescues B cells from apoptosis by activating NFkappaB and preventing mitochondrial membrane potential disruption via a chloroquine-sensitive pathway. Int Immunol. 1999;11:2015–24.CrossRefPubMedGoogle Scholar
  46. 46.
    Yi AK, Tuetken R, Redford T, Waldschmidt M, Kirsch J, Krieg AM. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol. 1998;160:4755–61.PubMedGoogle Scholar
  47. 47.
    Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol. 2009;70(10):777–84.CrossRefPubMedGoogle Scholar
  48. 48.
    Perez-Cabezas B, Naranjo-Gomez M, Fernandez MA, Grifols JR, Pujol-Borrell R, Borras FE. Reduced numbers of plasmacytoid dendritic cells in aged blood donors. Exp Gerontol. 2007;42:1033–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Shodell M, Siegal FP. Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand J Immunol. 2002;56:518–21.CrossRefPubMedGoogle Scholar
  50. 50.
    Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA. 2001;98:9237–42.CrossRefPubMedGoogle Scholar
  51. 51.
    Krug A, Rothenfusser S, Hornung V, Jahrsdorfer B, Blackwell S, Ballas ZK, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol. 2001;31:2154–63.CrossRefPubMedGoogle Scholar
  52. 52.
    Morris GE, Parker LC, Ward JR, Jones EC, Whyte MK, Brightling CE, et al. Cooperative molecular and cellular networks regulate Toll-like receptor-dependent inflammatory responses. FASEB J. 2006;20:2153–5.CrossRefPubMedGoogle Scholar
  53. 53.
    Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005;3:13–22.CrossRefPubMedGoogle Scholar
  54. 54.
    Lamb RA, Krug RM. Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 1487–532.Google Scholar
  55. 55.
    Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, Libraty DH. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol. 2006;177:7114–21.PubMedGoogle Scholar
  56. 56.
    Guiducci C, Ghirelli C, Marloie-Provost MA, Matray T, Coffman RL, Liu YJ, et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med. 2008;205:315–22.CrossRefPubMedGoogle Scholar
  57. 57.
    Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature. 2005;434:1035–40.CrossRefPubMedGoogle Scholar
  58. 58.
    Matlin KS, Reggio H, Helenius A, Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol. 1981;91:601–13.CrossRefPubMedGoogle Scholar
  59. 59.
    Surh CD, Boyman O, Purton JF, Sprent J. Homeostasis of memory T cells. Immunol Rev. 2006;211:154–63.CrossRefPubMedGoogle Scholar
  60. 60.
    Decalf J, Fernandes S, Longman R, Ahloulay M, Audat F, Lefrerre F, et al. Plasmacytoid dentritic cells initiate a complex chemokine and cyokine network and are a viable drug target in chronic HCV patients. J Exp Med. 2007;204:2423–37.CrossRefPubMedGoogle Scholar
  61. 61.
    Farrar JD, Smith JD, Murphy TL, Murphy KM. Recruitment of Stat4 to the human interferon-alph/beta receptor requires activated Stat2. J Biol Chem. 2000;275:2693–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Rogge L, D'Ambrosio D, Biffi M, Penna G, Minetti LJ, Presky DH, et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J Immunol. 1998;161:6567–74.PubMedGoogle Scholar
  63. 63.
    Davis AM, Ramos HJ, Davis LS, Farrar JD. Cutting edge: a T-bet-independent role for IFN-alpha/beta in regulating IL-2 secretion in human CD4+ central memory T cells. J Immunol. 2008;181:8204–8.PubMedGoogle Scholar
  64. 64.
    Ramos HJ, Davis AM, Cole AG, Schatzle JD, Forman J, Farrar JD. Reciprocal responsiveness to interleukin-12 and interferon-alpha specifies human CD8+ effector versus central memory T-cell fates. Blood. 2009;113:5516–25.CrossRefPubMedGoogle Scholar
  65. 65.
    Gallagher KM, Lauder S, Rees IW, Gallimore AM, Godkin AJ. Type I interferon (IFN alpha) acts directly on human memory CD4+ T cells altering their response to antigen. J Immunol. 2009;183:2915–20.CrossRefPubMedGoogle Scholar
  66. 66.
    Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med. 2005;202:637–50.CrossRefPubMedGoogle Scholar
  67. 67.
    Havenar-Daughton C, Kolumam GA, Murali-Krishna K. Cutting Edge: the direct action of type I IFN on CD4 T cells is critical for sustaining clonal expansion in response to a viral but not a bacterial infection. J Immunol. 2006;176:3315–9.PubMedGoogle Scholar
  68. 68.
    Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity. 2003;19:225–34.CrossRefPubMedGoogle Scholar
  69. 69.
    Le Bon A, Schiavoni G, D'Agostino G, Gresser I, Belardelli F, Tough DF. Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 2001;14:461–70.CrossRefPubMedGoogle Scholar
  70. 70.
    Coro ES, Chang WL, Baumgarth N. Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. J Immunol. 2006;176:4343–51.PubMedGoogle Scholar
  71. 71.
    Chang WL, Coro ES, Rau FC, Xiao Y, Erie DJ, Baumgarth N. Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals. J Immunol. 2007;178:1457–67.PubMedGoogle Scholar
  72. 72.
    Braun D, Caramalho I, Demengeot J. IFN-a/b enhances BCR-dependent B cell responses. Int Immunol. 2002;14:411–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Ito T, Amakawa R, UInaba M, Ikehara S, Inaba K, Fukuhara S. Differential regulation of human blood dendritic cell subsets by IFNs. J Immunol. 2001;166:2961–9.PubMedGoogle Scholar
  74. 74.
    Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol. 2003;4:1009–15.CrossRefPubMedGoogle Scholar
  75. 75.
    Tough DF. Type I interferon as a link between innate and adaptive immunity between through dendritic cell stimulation. Leuk Lymphoma. 2004;45:257–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David H. Canaday
    • 1
    • 2
  • Naa Ayele Amponsah
    • 2
  • Leola Jones
    • 2
  • Daniel J. Tisch
    • 3
  • Thomas R. Hornick
    • 1
  • Lakshmi Ramachandra
    • 4
  1. 1.Geriatric Research, Education and Clinical Center (GRECC)Cleveland VA Medical CenterClevelandUSA
  2. 2.Division of Infectious Diseases, Department of MedicineCase Western Reserve UniversityClevelandUSA
  3. 3.Department of Epidemiology and BiostatisticsCase Western Reserve UniversityClevelandUSA
  4. 4.Department of PathologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations