Journal of Clinical Immunology

, Volume 30, Issue 3, pp 358–363 | Cite as

Navigating Barriers: The Challenge of Directed Secretion at the Natural Killer Cell Lytic Immunological Synapse

  • Keri B. Sanborn
  • Jordan S. Orange



Natural killer (NK) cells have an inherent ability to recognize and destroy a wide array of cells rendered abnormal by stress or disease. NK cells can kill a targeted cell by forming a tight interface—the lytic immunological synapse. This represents a dynamic molecular arrangement that over time progresses through a series of steps to ultimately deliver the contents of specialized organelles known as lytic granules.


In order to mediate cytotoxicity, the NK cell faces the challenge of mobilizing the lytic granules, polarizing them to the targeted cell, facilitating their approximation to the NK cell membrane, and releasing their contents.


This review is focused upon the final steps in accessing function through the lytic immunological synapse.


NK cell cytotoxicity myosin IIA immune synapse 



This work was supported by National Institutes of Health grant R01-AI067946 (to J.S.O.). K.B.S. was supported by National Institutes of Health training grant T32-GM07229.


  1. 1.
    Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol. 2006;118:1–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen S, Kawashima H, Lowe JB, Lanier LL, Fukuda M. Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J Exp Med. 2005;202:1679–89.CrossRefPubMedGoogle Scholar
  3. 3.
    Orange JS, Harris KE, Andzelm MM, Valter MM, Geha RS, Strominger JL. The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc Natl Acad Sci USA. 2003;100:14151–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Davis DM, Chiu I, Fassett M, Cohen GB, Mandelboim O, Strominger JL. The human natural killer cell immune synapse. Proc Natl Acad Sci USA. 1999;96:15062–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Vyas YM, Mehta KM, Morgan M, Maniar H, Butros L, Jung S, et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J Immunol. 2001;167:4358–67.PubMedGoogle Scholar
  6. 6.
    Eissmann P, Davis DM. Inhibitory and regulatory immune synapses. Curr Top Microbiol Immunol. 2010;340:63–79.CrossRefPubMedGoogle Scholar
  7. 7.
    Carpen O, Virtanen I, Lehto VP, Saksela E. Polarization of NK cell cytoskeleton upon conjugation with sensitive target cells. J Immunol. 1983;131:2695–8.PubMedGoogle Scholar
  8. 8.
    Barber DF, Faure M, Long EO. LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol. 2004;173:3653–9.PubMedGoogle Scholar
  9. 9.
    Graham DB, Cella M, Giurisato E, Fujikawa K, Miletic AV, Kloeppel T, et al. Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics. J Immunol. 2006;177:2349–55.PubMedGoogle Scholar
  10. 10.
    Orange JS, Ramesh N, Remold-O’Donnell E, Sasahara Y, Koopman L, Byrne M, et al. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci USA. 2002;99:11351–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Butler B, Kastendieck DH, Cooper JA. Differently phosphorylated forms of the cortactin homolog HS1 mediate distinct functions in natural killer cells. Nat Immunol. 2008;9:887–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Wulfing C, Purtic B, Klem J, Schatzle JD. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing. Proc Natl Acad Sci USA. 2003;100:7767–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Butler B, Cooper JA. Distinct roles for the actin nucleators Arp2/3 and hDia1 during NK-mediated cytotoxicity. Curr Biol. 2009;19(22):1886–96.CrossRefPubMedGoogle Scholar
  14. 14.
    Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15:751–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med. 2005;202:1001–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen X, Allan DS, Krzewski K, Ge B, Kopcow H, Strominger JL. CD28-stimulated ERK2 phosphorylation is required for polarization of the microtubule organizing center and granules in YTS NK cells. Proc Natl Acad Sci USA. 2006;103:10346–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Sancho D, Nieto M, Llano M, Rodriguez-Fernandez JL, Tejedor R, Avraham S, et al. The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J Cell Biol. 2000;149:1249–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Banerjee PP, Pandey R, Zheng R, Suhoski MM, Monaco-Shawver L, Orange JS. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J Exp Med. 2007;204:2305–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Beal AM, Anikeeva N, Varma R, Cameron TO, Vasiliver-Shamis G, Norris PJ, et al. Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain. Immunity. 2009;31:632–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Jenkins MR, Tsun A, Stinchcombe JC, Griffiths GM. The strength of T cell receptor signal controls the polarization of cytotoxic machinery to the immunological synapse. Immunity. 2009;31:621–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Clark RH, Stinchcombe JC, Day A, Blott E, Booth S, Bossi G, et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol. 2003;4:1111–20.CrossRefPubMedGoogle Scholar
  22. 22.
    McCann FE, Vanherberghen B, Eleme K, Carlin LM, Newsam RJ, Goulding D, et al. The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J Immunol. 2003;170:2862–70.PubMedGoogle Scholar
  23. 23.
    Huang W, Ochs HD, Dupont B, Vyas YM. The Wiskott-Aldrich syndrome protein regulates nuclear translocation of NFAT2 and NF-kappa B (RelA) independently of its role in filamentous actin polymerization and actin cytoskeletal rearrangement. J Immunol. 2005;174:2602–11.PubMedGoogle Scholar
  24. 24.
    Andzelm MM, Chen X, Krzewski K, Orange JS, Strominger JL. Myosin IIA is required for cytolytic granule exocytosis in human NK cells. J Exp Med. 2007;204:2285–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Roda-Navarro P, Mittelbrunn M, Ortega M, Howie D, Terhorst C, Sanchez-Madrid F, et al. Dynamic redistribution of the activating 2B4/SAP complex at the cytotoxic NK cell immune synapse. J Immunol. 2004;173:3640–6.PubMedGoogle Scholar
  26. 26.
    Culley FJ, Johnson M, Evans JH, Kumar S, Crilly R, Casasbuenas J, et al. Natural killer cell signal integration balances synapse symmetry and migration. PLoS Biol. 2009;7:e1000159.CrossRefPubMedGoogle Scholar
  27. 27.
    Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443:462–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Burkhardt JK, McIlvain Jr JM, Sheetz MP, Argon Y. Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro. J Cell Sci. 1993;104(Pt 1):151–62.PubMedGoogle Scholar
  29. 29.
    Sanborn KB, Rak GD, Maru SY, Demers K, Difeo A, Martignetti JA, et al. Myosin IIA associates with NK cell lytic granules to enable their interaction with F-actin and function at the immunological synapse. J Immunol. 2009;182:6969–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Forkey JN, Quinlan ME, Shaw MA, Corrie JE, Goldman YE. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature. 2003;422:399–404.CrossRefPubMedGoogle Scholar
  31. 31.
    Dantzig JA, Liu TY, Goldman YE. Functional studies of individual myosin molecules. Ann N Y Acad Sci. 2006;1080:1–18.CrossRefPubMedGoogle Scholar
  32. 32.
    Dulyaninova NG, Malashkevich VN, Almo SC, Bresnick AR. Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry. 2005;44:6867–76.CrossRefPubMedGoogle Scholar
  33. 33.
    Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol. 2001;152:825–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Neeft M, Wieffer M, de Jong AS, Negroiu G, Metz CH, van Loon A, et al. Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol Biol Cell. 2005;16:731–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Menager MM, Menasche G, Romao M, Knapnougel P, Ho CH, Garfa M, et al. de Saint Basile G: secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nat Immunol. 2007;8:257–67.CrossRefPubMedGoogle Scholar
  36. 36.
    Marcet-Palacios M, Odemuyiwa SO, Coughlin JJ, Garofoli D, Ewen C, Davidson CE, et al. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line. Biochem Biophys Res Commun. 2008;366:617–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Arneson LN, Brickshawana A, Segovis CM, Schoon RA, Dick CJ, Leibson PJ. Cutting edge: syntaxin 11 regulates lymphocyte-mediated secretion and cytotoxicity. J Immunol. 2007;179:3397–401.PubMedGoogle Scholar
  38. 38.
    Bryceson YT, Rudd E, Zheng C, Edner J, Ma D, Wood SM, et al. Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood. 2007;110:1906–15.CrossRefPubMedGoogle Scholar
  39. 39.
    Cote M, Menager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest. 2009;119:12.Google Scholar
  40. 40.
    Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol. 2008;8(9):713–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Liu D, Bryceson YT, Meckel T, Vasiliver-Shamis G, Dustin ML, Long EO. Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses. Immunity. 2009;31:99–109.CrossRefPubMedGoogle Scholar
  42. 42.
    Herz J, Pardo J, Kashkar H, Schramm M, Kuzmenkina E, Bos E, et al. Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat Immunol. 2009;10:761–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Hoves S, Trapani JA, Voskoboinik I. The battlefield of perforin/granzyme cell death pathways. J Leukoc Biol. 2010; 87:237–243.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Immunology Graduate GroupUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Children’s Hospital Research Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Abramson Research Center 1014H, Division of ImmunologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations