Journal of Clinical Immunology

, Volume 28, Issue 5, pp 473–485 | Cite as

IL1 Gene Cluster Polymorphisms and Its Haplotypes may Predict the Risk to Develop Invasive Pulmonary Aspergillosis and Modulate C-reactive Protein Level

  • J. Sainz
  • E. Pérez
  • S. Gómez-Lopera
  • M. Jurado



The aim of this study was to determine whether interleukin-1 alpha (IL1α), interleukin-1 beta (IL1β), and IL1 receptor antagonist (IL1Ra) polymorphisms are implicated in invasive pulmonary aspergillosis (IPA) pathogenesis.

Materials and Methods

Subjects comprised 110 hematological patients and 148 healthy controls. Genotypic and allelic frequencies were similar between hematological patients and controls. IPA was diagnosed in 59 of the 110 patients according to consensus criteria published by the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group (EORTC/IFICG).

Results and Discussions

Individual locus analysis showed that IL1α and IL1Ra polymorphisms were not associated with the presence of IPA (p = 0.560 and p = 0.680, respectively). However, a trend towards a higher presence of IL1β - 511TT genotype (or IL1β-511T allele) in the IPA group than in the non-IPA patient group (p = 0.092 and p = 0.095, respectively) was found. Haplotype analysis revealed that VNTR2/-889C/-511T haplotype was strongly associated with susceptibility to develop IPA infection (p = 0.020). Haplotype analysis also showed an association between VNTR2/-889C/-511C haplotype and resistance to IPA infection (p = 0.028). Furthermore, patients with IL1Ra VNTR2/2 and IL1β-511T/T genotypes had a higher positive serum galactomannan percentage versus patients with other genotypes. Finally, C-reactive protein (CRP) production was significantly associated with IL1 gene cluster polymorphisms, although CRP values were similar between IPA and non-IPA groups.


These findings indicate a critical role of IL1 gene cluster polymorphisms in the susceptibility to IPA infection and CRP production.


IL1 cluster polymorphisms susceptibility IPA CRP galactomannan 



We are indebted to the patients and healthy controls who participated in this study. The advice of Dr. Victor Moreno (Catalan Institute of Oncology) on the development of the genetic tests is acknowledged. The authors thank C. González Moreno (leukemia survivor) for her generous donation, Elena Lamas (laboratory technician) for sample collection and technical support, and staff of the Research Unit of Virgen de las Nieves University Hospital for providing the necessary facilities. This study was supported by a grant (259/04) from the Servicio Andaluz de Salud (SAS), a grant from Fundación anti-cancer San Francisco Javier y Santa Cándida, and a postdoctoral training grant from the Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero (FIBAO).


  1. 1.
    Soubani AO, Chandrasekar PH. The clinical spectrum of pulmonary aspergillosis. Chest 2002;121:1988–199.PubMedCrossRefGoogle Scholar
  2. 2.
    Denning DW. Invasive aspergillosis. Clin Infect Dis. 1998;26:781–803.PubMedCrossRefGoogle Scholar
  3. 3.
    Denning DW, Anderson MJ, Turner G, Latge JP, Bennett JW. Sequencing the Aspergillus fumigatus genome. Lancet Infect Dis. 2002;2:251–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Gerson SL, Talbot GH, Hurwitz S, Strom BL, Lusk EJ, Cassileth PA. Prolonged granulocytopenia: the major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med. 1984;100:345–51.PubMedGoogle Scholar
  5. 5.
    Jantunen E, Anttila VJ, Ruutu T. Aspergillus infections in allogeneic stem cell transplant recipients: have we made any progress? Bone Marrow Transplant. 2002;30:925–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Baddley JW, Stroud TP, Salzman D, Pappas PG. Invasive mold infections in allogeneic bone marrow transplant recipients. Clin Infect Dis. 2001;32:1319–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12:310–50.PubMedGoogle Scholar
  8. 8.
    Wingard JR. Fungal infections after bone marrow transplant. Biol Blood Marrow Transplant. 1999;5:55.PubMedCrossRefGoogle Scholar
  9. 9.
    Saugier-Veber P, Devergie A, Sulahian A, Ribaud P, Traore F, Bourdeau-Esperou H, et al. Epidemiology and diagnosis of invasive pulmonary aspergillosis in bone marrow transplant patients: results of a 5 year retrospective study. Bone Marrow Transplant. 1993;12:121.PubMedGoogle Scholar
  10. 10.
    Clark TA, Hajjeh RA. Recent trends in the epidemiology of invasive mycoses. Curr Opin Infect Dis. 2002;15:569.PubMedGoogle Scholar
  11. 11.
    Weinberger M, Elattar I, Marshall D, Steinberg SM, Redner RL, Young NS, et al. Patterns of infection in patients with aplastic anemia and the emergence of Aspergillus as a major cause of death. Medicine 1992;71:24–43.PubMedGoogle Scholar
  12. 12.
    Marr KA, Carter RA, Boeckh M, Martin P, Corey L. Invasive aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and risk factors. Blood 2002;100:4358–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Grow WB, Moreb JS, Roque D, Manion K, Leather H, Reddy V, et al. Late onset of invasive Aspergillus infection in bone marrow transplant patients at a university hospital. Bone Marrow Transplant. 2002;29:15–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Herbrecht R, Denning DW, Patterson TF, Patterson TF, Bennett JE, Greene RE, et al. Invasive fungal infections group of the European organisation for research and treatment of cancer and the global Aspergillus study group: voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347:408–15.PubMedCrossRefGoogle Scholar
  15. 15.
    Schaffner A, Douglas H, Braude A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to Aspergillus. J Clin Invest. 1982;69:617–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang JE, Warris A, Ellingsen EA, Jorgensen PF, Flo TH, Espevik T, et al. Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun. 2001;69:2402–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz SM. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem. 2002;277:39320–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Huffnagle GB, Deepe GS. Innate and adaptive determinants of host susceptibility to medically important fungi. Curr Opin Microbiol 2003;6:344–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Syme RM, Spurrell JC, Amankwah EK, Green FH, Mody CH. Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect Immun. 2002;70:5972–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di Francesco P, et al. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol. 2002;168:1362–71.PubMedGoogle Scholar
  21. 21.
    Steinkasserer A, Spurr NK, Cox S, Jeggo P, Sim RB. The human IL-1 receptor antagonist gene (IL1RN) maps to chromosome 2q14-q21, in the region of the IL-1a and IL-1b loci. Genomics 1992;13:654–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Dinarello CA. The interleukin-1 family: 10 years of discovery. FASEB J. 1994;8:1314–25.PubMedGoogle Scholar
  23. 23.
    Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996;87:2095–147.PubMedGoogle Scholar
  24. 24.
    Sims JE, March CJ, Cosman D, Widmer MB, MacDonald HR, McMahan CJ, et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 1988;241:585–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Gauldie J, Sauder DN, Adam MC, Dinarello CA. Purified interleukin-1 (IL-1) from human monocytes stimulates acute-phase protein synthesis by rodent hepatocytes in vitro. Immunology 1987;60:203–7.PubMedGoogle Scholar
  26. 26.
    Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002;34:909–17.PubMedCrossRefGoogle Scholar
  27. 27.
    Cox A, Camp NJ, Cannings C, di Giovine FS, Dale M, Worthington J, et al. Combined sib-TDT and TDT provide evidence for linkage of the interleukin-1 gene cluster to erosive rheumatoid arthritis. Hum Mol Genet. 1999;8:1707–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Jouvenne P, Chaudhary A, Buchs N, Giovine FS, Duff GW, Miossec P. Possible genetic association between interleukin-1 alpha gene polymorphism and the severity of chronic polyarthritis. Eur Cytokine Netw. 1999;10:33–6.PubMedGoogle Scholar
  29. 29.
    Francis SE, Camp NJ, Dewberry RM, Gunn J, Syrris P, Carter ND, et al. Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease. Circulation 1999;99:861–6.PubMedGoogle Scholar
  30. 30.
    Nemetz A, Nosti-Escanilla MP, Molnár T, Köpe A, Kovács A, Fehér J, et al. IL1B gene polymorphisms influence the course and severity of inflammatory bowel disease. Immunogenetics 1999;49:527–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Brouard J, Knauer N, Boelle PY, Corvol H, Henrion-Caude A, Flamant C, et al. Influence of interleukin-10 on Aspergillus fumigatus infection in patients with cystic fibrosis. J Infect Dis. 2005;191:1988–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Sainz J, Hassan L, Perez E, Romero A, Moratalla A, Lopez-Fernandez E, et al. Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunol Lett. 2007;109:76–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Sainz J, Perez E, Hassan L, Moratalla A, Romero A, Collado MD, et al. Variable number of tandem repeats of TNF receptor type 2 promoter as genetic biomarker of susceptibility to develop invasive pulmonary aspergillosis. Hum Immunol. 2007;68:41–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Fang XM, Schroder S, Hoeft A, Stuber F. Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med. 1999;27:1330–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Ma P, Chen D, Pan J, Du B. Genomic polymorphism within interleukin-1 family cytokines influences the outcome of septic patients. Crit Care Med. 2002;30:1046–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Arnalich F, Lopez-Maderuelo D, Codoceo R, Lopez J, Solis-Garrido LM, Capiscol C, et al. Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis. Clin Exp Immunol. 2002;127:331–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Tsai FJ, Hsieh YY, Chang CC, Lin CC, Tsai CH. Polymorphisms for interleukin 1 beta exon 5 and interleukin 1 receptor antagonist in Taiwanese children with febrile convulsions. Arch Pediatr Adolesc Med. 2002;156:545–8.PubMedGoogle Scholar
  38. 38.
    Virta M, Hurme M, Helminen M. Increased frequency of interleukin-1beta (-511) allele 2 in febrile seizures. Pediatr Neurol. 2002;26:192–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. Tuberc Lung Dis. 1998;79:83–9.CrossRefGoogle Scholar
  40. 40.
    Wilkinson RJ, Patel P, Llewelyn M, Hirsch CS, Pasvol G, Snounou G, et al. Influence of polymorphism in the genes for the interleukin-1 receptor antagonist and IL-1b on tuberculosis. J Exp Med. 1999;189:1863–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Walley AJ, Aucan C, Kwiatkowski D, Hill AV. Interleukin-1 gene cluster polymorphisms and susceptibility to clinical malaria in a Gambian case-control study. Eur J Hum Genet. 2004;12:132–8.PubMedCrossRefGoogle Scholar
  42. 42.
    McDevitt MJ, Wang HY, Knobelman C, Newman MG, di Giovine FS, Timms J, et al. Interleukin-1 genetic association with periodontitis in clinical practice. J Periodontol. 2000;71:156–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Endres S, Cannon JG, Ghorbani R, Dempsey RA, Sisson SD, Lonnemann G, et al. In vitro production of IL-1 beta, IL-1 alpha, TNF and IL-2 in healthy subjects: distribution, effect of cyclooxygenase inhibition and evidence of independent gene regulation. Eur J Immunol. 1989;19:2327–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Hall SK, Perregaux DG, Gabel CA. Correlation of polymorphic variation in the promoter region of the interleukin-1β gene with secretion of interleukin-1b protein. Arthritis Rheum. 2004;50:1976–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Pociot F, Molvig J, Wogensen L, Worsaae H, Nerup J. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest. 1992;22:396–402.PubMedCrossRefGoogle Scholar
  46. 46.
    Hwang IR, Kodama T, Kikuchi S, Sakai K, Peterson LE, Gram DY, et al. Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. Gastroenterology 2002;123:1793–803.PubMedCrossRefGoogle Scholar
  47. 47.
    Ascioglu S, Rex JH, de Pauw B, Bennett JE, Bille J, Crokaert F, et al. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and haematopoietic stem cell transplants: an international consensus. Clin Infect Dis. 2002;34:7–14.PubMedCrossRefGoogle Scholar
  48. 48.
    McDowell TL, Symons JA, Ploski R, Forre O, Duff GW. A genetic association between juvenile rheumatoid arthritis and a novel interleukin-1 alpha polymorphism. Arthritis Rheum. 1995;38:221–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Di Giovine FS, Takhsh E, Blakemore AI, Duff GW. Single base polymorphism at -511 in the human interleukin-1 beta gene (IL1 beta). Hum Mol Genet. 1992;1:450.PubMedCrossRefGoogle Scholar
  50. 50.
    Craggs A, West S, Curtis A, Welfare M, Hudson M, Donaldson P, et al. Absence of a genetic association between IL-1RN and IL-1B gene polymorphisms in ulcerative colitis and Crohn disease in multiple populations from northeast England. Scand J Gastroenterol. 2001;36:1173–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Latge JP, Kobayashi H, Debeaupuis JP, Diaquin M, Sarfati J, Wieruszeski JM, et al. Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun. 1994;62:5424–33.PubMedGoogle Scholar
  52. 52.
    Marr KA, Balajee SA, McLaughlin L, Tabouret M, Bentsen C, Walsh TJ. Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: variables that affect performance. J Infect Dis. 2004;190:641–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Becker MJ, Lugtenburg EJ, Cornelissen JJ, Van Der Schee C, Hoogsteden HC, De Marie S. Galactomannan detection in computerized tomography-based broncho-alveolar lavage fluid and serum in hematological patients at risk for invasive pulmonary aspergillosis. Br J Haematol. 2003;121:448–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Herbrecht R, Letscher-Bru V, Oprea C, Lioure B, Waller J, Campos F, et al. Aspergillus galactomannan detection in the diagnosis of invasive aspergillosis in cancer patients. J Clin Oncol. 2002;20:1898–906.PubMedCrossRefGoogle Scholar
  55. 55.
    Maertens J, Verhaegen J, Demuynck H, Brock P, Verhoef G, Vanderberghe P, et al. Autopsy-controlled prospective evaluation of serial screening for circulating galactomannan by a sandwich enzyme-linked immunosorbent assay for hematological patients at risk for invasive aspergillosis. J Clin Microbiol. 1999;37:3223–8.PubMedGoogle Scholar
  56. 56.
    Maertens J, Van Eldere J, Verhaegen J, Verbeken J, Verschakelen J, Boogaerts M. Use of circulating galactomannan screening for early diagnosis of invasive aspergillosis in allogeneic stem cell transplant recipients. J Infect Dis. 2002;186:1297–306.PubMedCrossRefGoogle Scholar
  57. 57.
    Maertens J, Theunissen K, Verbeken E, Lagrou K, Verhaegen J, Boogaerts M, et al. Prospective clinical evaluation of lower cut-offs for galactomannan detection in adult neutropenic cancer patients and hematological stem cell transplant recipients. Br J Haematol. 2004;126:852–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006;22:1928–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Tishkoff SA, Pakstis AJ, Ruano G, Kidd KK. The accuracy of statistical methods for estimation of haplotype frequencies: an example from the CD4 locus. Am J Hum Genet. 2000;67:518–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, et al. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer’s disease. Genome Res. 2001;11:143–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Mansfield JC, Holden H, Tarlow JK, Di Giovine FS, McDowell TL, Wilson AG, et al. Novel genetic association between ulcerative colitis and the anti-inflammatory cytokine interlukin-1 receptor antagonist. Gastroenterology 1994;106:637–42.PubMedGoogle Scholar
  62. 62.
    Hefler LA, Grimm C, Lantzsch T, Lampe D, Leodolter S, Koelbl S, et al. Interleukin-1 and interleukin-6 gene polymorphisms and the risk of breast cancer in Caucasian women. Clin Cancer Res. 2005;11:5718–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Parks CG, Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Gilkeson GS, et al. Systemic lupus erythematosus and genetic variation in the interleukin 1gene cluster: a population based study in the southeastern United States. Ann Rheum Dis. 2004;63:91–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Lin RC, Morris BJ. Association analysis of polymorphisms at the interleukin-1locus in essential hypertension. Am J Med Genet. 2002;107:311–16.PubMedCrossRefGoogle Scholar
  65. 65.
    Schaffner A, Douglas H, Braude A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to Aspergillus: observations on these two lines of defense in vivo and in vitro with human and mouse phagocytes. J Clin Invest. 1982;69:617–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Waldorf AR, Levitz S, Diamond RD. In vivo bronchoalveolar macrophage defense against Rhizopus oryzae and Aspergillus fumigatus. J Infect Dis. 1984;150:752–60.PubMedGoogle Scholar
  67. 67.
    Cenci E, Mencacci A, Fe d, ’ C, Del Sero G, Mosci P, Montagnoli C, et al. Cytokine- and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J Infect Dis. 1998;178:1750–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Romani L. The T cell response against fungal infections. Curr Opin Immunol. 1997;9:484–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Paterson DL, Singh N. Invasive aspergillosis in transplant recipients. Medicine 1999;78:123.PubMedCrossRefGoogle Scholar
  70. 70.
    Sainz J, Pérez E, Gómez-Lopera S, López-Fernández E, Moratalla L, Oyonarte S, et al. Genetic variants of IL6 gene promoter influence on C-reactive protein levels but are not associated with susceptibility to Invasive pulmonary aspergillosis in hematological patients. Cytokine. 2008;41:268–278.PubMedCrossRefGoogle Scholar
  71. 71.
    Gotsch U, Jager U, Dominis M, Vestweber D. Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-alpha in vivo. Cell Adhesion Commun. 1994;2:7–14.CrossRefGoogle Scholar
  72. 72.
    Haraldsen G, Kuale D, Lieu B, Farstad IN, Brandzaly P. Cytokine-regulated expression of E-selectin, intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human intestinal microvascular endothelial cells. J Immunol. 1996;156:2558–65.PubMedGoogle Scholar
  73. 73.
    Kansas GS. Selectins and their ligands: current concepts and controversies. Blood 1996;88:3259–87.PubMedGoogle Scholar
  74. 74.
    Vecchiarelli A, Dottorini M, Pietrella D, Monari C, Retini C, Todisco T, et al. Role of human alveolar macrophages as antigen-presenting cells in Cryptococcus neoformans infection. Am J Resp Cell Mol Biol. 1994;11:130–7.Google Scholar
  75. 75.
    Gauldie J, Sauder DN, Adam MC, Dinarello CA. Purified interleukin-1 (IL-1) from human monocytes stimulates acute-phase protein synthesis by rodent hepatocytes in vitro. Immunology 1987;60:203–7.PubMedGoogle Scholar
  76. 76.
    Dominici R, Cattaneo M, Malferrari G, Archi D, Mariani C, Grimaldi LME, et al. Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region on interleukin-1a. Immunogenetics 2002;54:82–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Hulkkonen J, Vilpo J, Vilpo L, Koski T, Hurme M. Interleukin-1 beta, interleukin 1 receptor antagonist and interleukin-6 plasma levels and cytokine gene polymorphisms in chronic lymphocytic leukaemia: correlation with prognostic parameters. Haematologica 2000;85:600–6.PubMedGoogle Scholar
  78. 78.
    Hurme M, Helminen M. Resistance to human cytomegalovirus infection may be influenced by genetic polymorphisms of the tumor necrosis factor-alpha and interleukin-1 receptor antagonist genes. Scand J Infect Dis. 1998;30:447–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Hurme M, Helminen M. Polymorphism of the IL-1 gene complex and Epstein-Barr virus seronegative and seropositive adult blood donors. Scand J Immunol. 1998;48:219–22.PubMedCrossRefGoogle Scholar
  80. 80.
    Witkin SS, Linhares IM, Gerber S, Caetano ME, Segurado AC. Interleukin-1 receptor antagonist gene polymorphism and circulating levels of HIV-1 RNA in Brazilian women. J Virol. 2001;75:6242–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z, et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet. 2001;29:223–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, et al. Haplotype tagging for the identification of common disease genes. Nat Genet. 2001;29:233–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet. 2002;70:425–44.PubMedCrossRefGoogle Scholar
  84. 84.
    Schaid DJ. Relative efficiency of ambiguous vs. directly measured haplotype frequencies. Genet Epidemiol. 2002;23:426–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Johnson JA, Terra SG. Beta-adrenergic receptor polymorphisms: cardiovascular disease associations and pharmacogenetics. Pharm Res. 2002;19:1779–87.PubMedCrossRefGoogle Scholar
  86. 86.
    Kamberi M, Brummer E, Stevens DA. Regulation of bronchoalveolar macrophage proinflammatory cytokine production by dexamethasone and granulocyte-macrophage colony-stimulating factor after stimulation by Aspergillus conidia and lipopolysaccharide. Cytokine 2002;19:14–20.PubMedCrossRefGoogle Scholar
  87. 87.
    Berger P, McConnell JP, Nunn M, Kornman KS, Sorrell J, Stephenson K, et al. C-reactive protein levels are influenced by common IL-1 gene variations. Cytokine 2002;17:171–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Yonemori K, Kanda Y, Yamamoto R, Hamaki T, Suguro M, Chizuka A, et al. Clinical value of serial measurement of serum C-reactive protein level in neutropenic patients. Leuk Lymphoma. 2001;41:607–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Sainz
    • 1
    • 2
    • 3
  • E. Pérez
    • 2
  • S. Gómez-Lopera
    • 2
  • M. Jurado
    • 2
  1. 1.Unidad de InvestigaciónHospital Universitario Virgen de las NievesGranadaSpain
  2. 2.Servicio de HematologíaHospital Universitario Virgen de las NievesGranadaSpain
  3. 3.Unidad de Investigación y Servicio de HematologíaHospital Universitario Virgen de las NievesGranadaSpain

Personalised recommendations