Brugia malayi Adult Low Molecular Weight IgG4-Reactive Antigens Induce Differential Cytokine Response in Lymphocytes of Endemic Normal and Asymptomatic Microfilariae Carriers In Vitro

  • Bimal P. Mohanty
  • Ramanuj Lahiri
  • Shailja Misra-Bhattacharya
  • Santosh K. Kar
Original Article


To characterize putatively protective immune response in bancroftian filariasis, Th1/Th2 cytokine profile induced in peripheral blood mononuclear cells (PBMCs) of endemic normal (EN) and asymptomatic microfilaremic (ASM) individuals were studied using different molecular weight fractions of Brugia malayi adult soluble antigens (BmA), which are differentially recognized by IgG4 antibodies present in their sera. Infection free and putatively immune individuals living in a filaria endemic area were identified and included in the present study as EN only after careful longitudinal follow up for three years. It was observed that the low molecular weight antigens present in Fr4 and Fr5 induced differential cytokine response; EN individuals showed a strong Th1 bias whereas ASM individuals showed a strong Th2 bias even though both the groups produced Th1 cytokines, albeit of different quantity, when a nonhelminthic antigen like H37Rv whole cell lysate was used. Since antigens present in Fr5 induced a highly polarized response, they should be examined for their diagnostic potential in lymphatic filariasis.


bancroftian filariasis longitudinal follow up infection free endemic normal individual Brugia malayi adult soluble antigens IgG4-reactive antigen fraction differential Th1/Th2 cytokine response 

Abbreviations used:


Brugia malayi adult soluble antigens


counts per minute


circulating filarial antigen


endemic normal


asymptomatic microfilariae carriers


nitro cellulose membrane


peripheral blood mononuclear cells


sodium dodecyl sulfate polyacrylamide gel electrophoresis.



BPM is thankful to the Indian Council of Agricultural Research for the study leave. The work was supported by a grant from Department of Science and Technology, Government of India (No.100/(IFD)/224/2000-2003) to SKK and SMB.


  1. 1.
    Molyneux DH, Taylor MJ: Current status and future prospects of the global lymphatic filariasis programme. Curr Opin Infect Dis 14:155–159, 2001PubMedCrossRefGoogle Scholar
  2. 2.
    Witt C, Ottesen EA: Lymphatic filariasis: An infection of childhood. Trop Med Int Health 6:582–606, 2001PubMedCrossRefGoogle Scholar
  3. 3.
    Freedman DO, Nutman TB, Ottesen EA: Protective immunity in bancroftian filariasis: Selective recognition of a 43-kDa larval stage antigen by infection-free individuals in an endemic area. J Clin Invest 83:14–22, 1989PubMedCrossRefGoogle Scholar
  4. 4.
    Raghavan N, Freedman DO, Fitzgerald PC, Unnaseb TR, Ottesen EA, Nutman TB: Cloning and characterization of a potentially protective chitinase-like recombinant antigen from Wuchereria bancrofti. Infect Immun 62:1901–1908, 1994PubMedGoogle Scholar
  5. 5.
    Williams SA et al.: Deep within the filarial genome: Progress of the filarial genome project. Parasitol Today 15:219–224, 1999PubMedCrossRefGoogle Scholar
  6. 6.
    Babu BV, Acharya AS, Mallick G, Jangid PK, Nayak AN, Satyanarayana K: Lymphatic filariasis in Khurda district of Orissa, India: An epidemiological study. Southeast Asian J Trop Med Public Health 32:240–243, 2001PubMedGoogle Scholar
  7. 7.
    Das MK, Beuria MK, Dash AP: Immunoglobulin E and G4 antibodies to infective larvae in a Wuchereria bancrofti endemic population. Int Arch Allergy Immunol 99:118–122, 1992PubMedCrossRefGoogle Scholar
  8. 8.
    Dalai SK, Das D, Kar SK: Setaria digitata adult 14- to 20-kDa antigens induce differential Th1 and Th2 cytokine responses in the lymphocytes of endemic normals and asymptomatic microfilariae carriers in bancroftian filariasis. J Clin Immunol 18:114–123, 1998PubMedCrossRefGoogle Scholar
  9. 9.
    More SJ, Copeman DB: A highly specific and sensitive monoclonal antibody based ELISA for the detection of circulating antigen in bancroftian filariasis. Trop Med Parasitol 41:403–406, 1990PubMedGoogle Scholar
  10. 10.
    Haarbrink MA, Terhell A, Abadi K et al.: IgG4 antibody assay in the detection of filariasis. Lancet 346:853–854, 1995PubMedCrossRefGoogle Scholar
  11. 11.
    Kurniawan-Atmadja A, Sartono E, Partono F, Yazdanbakhsh M, Maizels RM: Antibody responses to filarial infective larvae are not dominated by the IgG4 isotype. Parasite Immunol 20:9–17, 1998PubMedGoogle Scholar
  12. 12.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RL: Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275, 1951PubMedGoogle Scholar
  13. 13.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685, 1970.PubMedCrossRefGoogle Scholar
  14. 14.
    Hussain R, Grogl M, Ottesen EA: IgG antibody subclasses in human filariasis: Differential subclass recognition of parasite antigens correlates with different clinical manifestations of infection. J Immunol 139:2794–2798, 1987PubMedGoogle Scholar
  15. 15.
    Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some application. Proc Natl Acad Sci, USA 76:4350–4354, 1979PubMedCrossRefGoogle Scholar
  16. 16.
    Abou-Zeid C, Filley E, Steele J, Rook GAW: A simple new method for using antigens separated by polyacrylamide gel electrophoresis to stimulate lymphocytes in vitro after converting bands cut from western blots into antigen bearing particles. J Immunol Methods 98:5–10, 1987PubMedCrossRefGoogle Scholar
  17. 17.
    Boyum A: Separation of leukocytes from blood and bone marrow. Scand J Clin Lab Invest 21(Suppl. 97):77–89, 1968.Google Scholar
  18. 18.
    Kaushal NA, Hussain R, Nash TE, Ottesen EA: Identification and characterization of excretory-secretory products of Brugia malayi, adult filarial parasites. J Immunol 129:338–343, 1982PubMedGoogle Scholar
  19. 19.
    Chenthamarakshan V, Reddy MVR, Harinath BC: Immunoprophylactic potential of a 120 kDa Brugia malayi adult antigen fraction, BmA-2, in lymphatic filariasis. Parasite Immunol 17:277–285, 1995PubMedGoogle Scholar
  20. 20.
    King CL, Nutman TB: IgE and IgG subclass regulation by IL-4 and IFN-γ in human helminth infections. J Immunol 151:458–465, 1993PubMedGoogle Scholar
  21. 21.
    Chandrasekhar R, Curtis KC, Ramzy RM, Liftis F, Li BW, Weil GJ: Molecular cloning of Brugia malayi antigens for diagnosis of lymphatic filariasis. Mol Biochem Parasitol 64:261–271, 1994CrossRefGoogle Scholar
  22. 22.
    Rao KV, Eswaran M, Ravi V, Gnanasekhar B, Narayanan RB, Kaliraj P, Jayaraman K, Marson A, Raghavan N, Scott AL: The Wuchereria bancrofti orthologue of Brugia malayi SXP1 and the diagnosis of bancroftian filariasis. Mol Biochem Parasitol 107:71–80, 2000PubMedCrossRefGoogle Scholar
  23. 23.
    Taylor MJ, Hoerauf A: Wolbachia bacteria of filarial nematodes. Parasitol Today 15:437–442, 1999PubMedCrossRefGoogle Scholar
  24. 24.
    Kaushal NA, Hussain R, Ottesen EA: Excretory-secretory and somatic antigens in the diagnosis of human filariasis. Clin Exp Immunol 56:567–576, 1984PubMedGoogle Scholar
  25. 25.
    Kurniawan A, Yazdanbakhsh M, Van Ree R, Aalberse R, Selkirk ME, Partono F, Maizels RM: Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. J Immunol 150:3941–3950, 1993PubMedGoogle Scholar
  26. 26.
    Singh U, Misra S, Murthy PK, Katiyar JC, Agrawal A, Sircar AR: Immunoreactive molecules of Brugia malayi and their diagnostic potential. Serodiagn Immunopath Infect Dis 8:207–212, 1997CrossRefGoogle Scholar
  27. 27.
    Kurniawan-Atmadja A, Sartono E, Partono F, Yazdanbakhsh M, Maizels RM: Specificity of predominant IgG4 antibodies to adult and microfilarial stages of Brugia malayi. Parasite Immunol 20:155–162, 1998PubMedGoogle Scholar
  28. 28.
    Kwan-Lim GE, Forsyth KP, Maizels RM: Filaria-specific IgG4 response correlates with active Wuchereria bancrofti infection. J Immunol 145:4298–4305, 1990PubMedGoogle Scholar
  29. 29.
    Ottesen EA, Skvari F, Tripathy SR, Poindexter RW, Hussain R: Prominence of IgG4 in the IgG antibody response to human filariasis. J Immunol 134:2707–2712, 1985PubMedGoogle Scholar
  30. 30.
    Hussain R, Ottesen EA: IgE responses in human filariasis. IV Parallel antigen recognition by IgE and IgG4 subclass antibodies. J Immunol 136:1859–1863, 1986PubMedGoogle Scholar
  31. 31.
    Hussain R, Poindexter RW, Ottesen EA: Control of allergic reactivity in human filariasis: Predominant localization of blocking antibody to the IgG4 subclass. J Immunol 148:2731–2737, 1992PubMedGoogle Scholar
  32. 32.
    Soboslay PT, Weiss N, Drewick CM et al.: Experimental onchocerciasis in chimpanzees. Antibody response and antigen recognition after primary infection with Onchocerca volvulus. Exp Parasitol 74:367–380, 1992PubMedCrossRefGoogle Scholar
  33. 33.
    Egwang TG, Akue JP, Dupont A, Pinder M: The identification and partial characterization of an immunodominant 29–31 kilodalton surface antigen expressed by adult worms of the human filaria Loa loa. Mol Biochem Parasitol 31:263–272, 1988PubMedCrossRefGoogle Scholar
  34. 34.
    Lucius R, Textor G, Kern A, Kirsten C: Acanthocheilonema vitae: Vaccination of jirds with irradiation-attenuated stage-3 larvae and with exported larval antigens. Exp Parasitol 73:184–196, 1991PubMedCrossRefGoogle Scholar
  35. 35.
    Mohanty BP, Dalai SK, Kar SK: IgG4-reactive low molecular weight antigens from Setaria digitata adult parasites have immunodiagnostic potential in lymphatic filariasis. Curr Sci 91:1221–1225, 2006Google Scholar
  36. 36.
    Noya O, Fermin Z, Noya AB et al.: Humoral immune response of children with chronic schistosomiasis. Isotype recognition of adult worm antigens. Parasite Immunol 17:319–328, 1995PubMedGoogle Scholar
  37. 37.
    Cabrera Z, Buttner DW, Parkhouse RME: Unique recognition of a low molecular weight Onchocerca volvulus antigen by IgG3 antibodies in chronic hyper-reactive oncho-dermatitis (Sowda). Clin Exp Immunol 74:223–229, 1988PubMedGoogle Scholar
  38. 38.
    Weiss N, Karam M: Evaluation of a specific enzyme immunoassay for onchocerciasis using a low molecular weight antigen fraction of Onchocerca volvulus. Am J Trop Med Hyg 40:261–267, 1989PubMedGoogle Scholar
  39. 39.
    Lobos E, Weiss N, Karam M, Taylor HR, Ottesen EA, Nutman TB: An immunogenic Onchocerca volvulus antigen: A specific and early marker of infection. Science 251:1603–1605, 1991PubMedCrossRefGoogle Scholar
  40. 40.
    Bradley JE, Helm R, Lehaise M, Maizels RM: cDNA clones of Onchocerca volvulus low molecular weight antigens provide immunologically specific diagnostic probes. Mol Biochem Parasitol 46:219–228, 1991PubMedCrossRefGoogle Scholar
  41. 41.
    Dimock KA, Addiss DG, Eberhard ML, Lammie PJ: Differential proliferative and IL-10 responses to fractionated filarial antigens: Preferential recognition by patients with chronic lymphatic dysfunction. J Infect Dis 170:403–412, 1994PubMedGoogle Scholar
  42. 42.
    Dimock KA, Eeberhard ML, Lammie PJ: Th1-like anti-filarial immune responses predominant in antigen negative persons. Infect Immun 64:2962–2967, 1996PubMedGoogle Scholar
  43. 43.
    Babu S, Kumaraswami V, Nutman TB: Transcriptional control of impaired Th1 responses in patent lymphatic filariasis by T-box expressed in T cells and suppressor of cytokine signaling genes. Infect Immun 73:3394–3401, 2005PubMedCrossRefGoogle Scholar
  44. 44.
    Gillan V, Devaney E: Regulatory T cells modulate Th2 responses induced by Brugia pahangi third-stage larvae. Infect Immun 73:4034–4042, 2005PubMedCrossRefGoogle Scholar
  45. 45.
    Babu S, Blauvelt CP, Kumaraswami V, Nutman TB: Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: Implications for parasite persistence. J Immunol 176:3248–3256, 2006PubMedGoogle Scholar
  46. 46.
    Das PK, Ramaiah KD, Augustin DJ, Kumar A: Towards elimination of lymphatic filariasis in India. Trends Parasitol 17:457–460, 2001PubMedCrossRefGoogle Scholar
  47. 47.
    Mohanty BP: On prevention, control and global elimination of lymphatic filariasis. Proc Natl Acad Sci India 75B:73–85, 2005Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bimal P. Mohanty
    • 1
    • 2
  • Ramanuj Lahiri
    • 1
    • 3
  • Shailja Misra-Bhattacharya
    • 4
  • Santosh K. Kar
    • 1
  1. 1.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Central Inland Fisheries Research Institute, BarrackporeKolkataIndia
  3. 3.National Hansen’s Disease ProgramLouisiana State UniversityBaton RougeUSA
  4. 4.Division of ParasitologyCentral Drug Research InstituteLucknowIndia

Personalised recommendations