Advertisement

Journal of Clinical Immunology

, Volume 27, Issue 1, pp 95–100 | Cite as

CTLA-4 Gene Exon-1 +49 A/G Polymorphism: Lack of Association with Autoimmune Disease in Patients with Common Variable Immune Deficiency

  • Adina Kay Knight
  • Davide Serrano
  • Yaron Tomer
  • Charlotte Cunningham-Rundles
OriginalArticle

The presence of the G allele of exon-1 +49 A/G polymorphisms of the cytotoxic T lymphocyte antigen 4 (CTLA-4) gene has been described as a risk factor associated with the development of autoimmune diseases. Since Common Variable Immune Deficiency (CVID) is associated with autoimmune manifestations in approximately 25% of patients, we sought to examine the association of the CTLA-4 single nucleotide polymorphism with autoimmunity and other inflammatory complications. Sixteen of 47 CVID (34%) patients had a history of autoimmunity, and 15 (32%) had known granulomatous disease with or without lymphoid hyperplasia. CTLA-4 genotype frequencies were AA 40% (19), AG 45% (21), and GG 15% (7). Allele frequencies were A 63% and G 37%, similar to control populations. There were no significant associations between CTLA-4 exon-1 +49 A/G polymorphism and autoimmune or lymphoid hyperplasia and granulomatous disease in this mostly Caucasian CVID patient population.

KEY WORDS

Common variable immune deficiency autoimmunity granuloma lymphoid hyperplasia 

Notes

Acknowledgments

Special thanks to Drs Li Zhang, Ulrich Salzar, Bodo Grimbacher, and Timothy Behrens for providing TACI sequencing data. This work was supported by grants from the National Institutes of Health, AI 101093, AI-467320, AI-48693 and NIAID Contract 03-22. Adina Kay Knight was supported in part by the AAAAI Clinical Fellowship Award.

References

  1. 1.
    Brunet JF, et al.: A new member of the immunoglobulin superfamily—CTLA-4. Nature 328(6127):267–70, 1987PubMedCrossRefGoogle Scholar
  2. 2.
    Manzotti CN, et al.: Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25 +regulatory T cells. Eur J Immunol 32(10):2888–2896, 2002PubMedCrossRefGoogle Scholar
  3. 3.
    Gregor PD, et al.: CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine 22(13-14):1700–1708, 2004PubMedCrossRefGoogle Scholar
  4. 4.
    Phan GQ, et al.: Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. PNAS 100(14):8372–8377, 2003PubMedCrossRefGoogle Scholar
  5. 5.
    Attia P, et al.: Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic t-lymphocyte antigen-4. J Clin Oncol 23(25):6043–6053, 2005PubMedCrossRefGoogle Scholar
  6. 6.
    Larry W, Moreland RA, Van Den Bosch F, Appelboom T, Leon M, Emery P, Stanley C, Luggen M, Shergy W, Nuamah I, Becker J-C: Costimulatory blockade in patients with rheumatoid arthritis: A pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthrit Rheumat 46(6):1470–1479, 2002CrossRefGoogle Scholar
  7. 7.
    Kremer JM, et al.: Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349(20):1907–1915, 2003PubMedCrossRefGoogle Scholar
  8. 8.
    Parry RV, et al.: CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 171(1):166–174, 2003PubMedGoogle Scholar
  9. 9.
    Riley JL, et al.: ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement. J Immunol 166(8):4943–4948, 2001PubMedGoogle Scholar
  10. 10.
    Grimbacher B, et al.: Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4(3):261–268, 2003PubMedCrossRefGoogle Scholar
  11. 11.
    Di Renzo M, et al.: Enhanced apoptosis of T cells in common variable immunodeficiency (CVID): Role of defective CD28 co-stimulation. Clin Exp Immunol 120(3):503–511, 2000PubMedCrossRefGoogle Scholar
  12. 12.
    Donner H, et al.: Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto's thyroiditis and Addison's disease. J Clin Endocrinol Metab 82(12):4130–4132, 1997PubMedCrossRefGoogle Scholar
  13. 13.
    Ueda H, et al.: Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423(6939):506–511, 2003PubMedCrossRefGoogle Scholar
  14. 14.
    Kouki T, et al.: CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves' disease. J Immunol 165(11):6606–6611, 2003Google Scholar
  15. 15.
    Ban Y, et al.: Analysis of the CTLA-4, CD28, and inducible costimulator (ICOS) genes in autoimmune thyroid disease. Genes Immun 4(8):586–593, 2003PubMedCrossRefGoogle Scholar
  16. 16.
    Vaidya B, et al.: An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology 41(2):180–183, 2002PubMedCrossRefGoogle Scholar
  17. 17.
    Haller K, et al.: Type 1 diabetes is insulin-2221 MspI and CTLA-4 +49 A/G polymorphism dependent. Eur J Clin Invest 34(8):543–548, 2004PubMedCrossRefGoogle Scholar
  18. 18.
    Blomhoff A, et al.: Polymorphisms in the cytotoxic T lymphocyte antigen-4 gene region confer susceptibility to Addison's disease. J Clin Endocrinol Metab 89(7):3474–3476, 2004PubMedCrossRefGoogle Scholar
  19. 19.
    Chistiakov D, Turakulov R: CTLA-4 and its role in autoimmune thyroid disease. J Mol Endocrinol 31(1):21–36, 2003PubMedCrossRefGoogle Scholar
  20. 20.
    Lee YH, Harley JB, Nath SK: CTLA-4 polymorphisms and systemic lupus erythematosus (SLE): A meta-analysis. Human Genet, 2005Google Scholar
  21. 21.
    Bonilla FA, et al.: Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol 94(5 Suppl 1):S1–63, 2005PubMedCrossRefGoogle Scholar
  22. 22.
    Warnatz K, et al.: Severe deficiency of switched memory B cells (CD27+IgM-IgD-) in subgroups of patients with common variable immunodeficiency: A new approach to classify a heterogeneous disease. Blood 99(5):1544–1551, 2002PubMedCrossRefGoogle Scholar
  23. 23.
    Piqueras B, et al.: Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. J Clin Immunol 23(5):385–400, 2003PubMedCrossRefGoogle Scholar
  24. 24.
    Ko J, Radigan L, Cunningham-Rundles C: Immune competence and switched memory B cells in common variable immunodeficiency. Clinical Immunol 116(1):37–41, 2005CrossRefGoogle Scholar
  25. 25.
    Fasano MB, et al.: Sarcoidosis and common variable immunodeficiency. Report of 8 cases and review of the literature. Medicine 75(5):251–261, 1996PubMedCrossRefGoogle Scholar
  26. 26.
    Mechanic LJ, Dikman S, Cunningham-Rundles C: Granulomatous disease in common variable immunodeficiency. Ann Intern Med 127(8):613–617, 1997PubMedGoogle Scholar
  27. 27.
    Torrelo A, Mediero IG, Zambrano A: Caseating cutaneous granulomas in a child with common variable immunodeficiency. Pediatric Dermatol 12(2):170–173, 1995Google Scholar
  28. 28.
    Lun KR, et al.: Granulomas in common variable immunodeficiency: A diagnostic dilemma. Aust J Dermatol 45(1):51–54, 2004CrossRefGoogle Scholar
  29. 29.
    Krupnick AI, et al.: Cutaneous granulomas masquerading as tuberculoid leprosy in a patient with congenital combined immunodeficiency. Mount Sinai J Med 68(4–5):326–330Google Scholar
  30. 30.
    Giannouli S, et al.: Autoimmune manifestations in common variable immunodeficiency. Clin Rheumatol 23(5):449–452, 2004PubMedCrossRefGoogle Scholar
  31. 31.
    Mullighan CG, Marshall SE, Welsh KI: Mannose binding lectin polymorphisms are associated with early age of disease onset and autoimmunity in common variable immunodeficiency. Scand J Immunol 51(2):111–122, 2000PubMedCrossRefGoogle Scholar
  32. 32.
    Castigli E, et al.: TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 37(8):829–834, 2005PubMedCrossRefGoogle Scholar
  33. 33.
    Salzer U, et al.: Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 37(8):820–828, 2005PubMedCrossRefGoogle Scholar
  34. 34.
    Jean-Claude Brouet: ACJ-PFBR: Study of the B cell memory compartment in common variable immunodeficiency. Eur J Immunol 30(9):2516–2520, 2000Google Scholar
  35. 35.
    Ko J, Radigan L, Cunningham-Rundles C: Immune competence and switched memory B cells in common variable immunodeficiency. Clin Immunol 116(1):37–41, 2005PubMedCrossRefGoogle Scholar
  36. 36.
    Agematsu K, et al.: Absence of memory B cells in patients with common variable immunodeficiency. Clin Immunol 103(1):34–42, 2002PubMedCrossRefGoogle Scholar
  37. 37.
    Jacquot S, et al.: B cell co-receptors regulating T cell-dependent antibody production in common variable immunodeficiency: CD27 pathway defects identify subsets of severely immuno-compromised patients. 871–876, 2001Google Scholar
  38. 38.
    Piqueras B, et al.: Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. J Clin Immunol 23(5):385–400, 2003PubMedCrossRefGoogle Scholar
  39. 39.
    Villanueva R, et al.: Limited genetic susceptibility to severe Graves' ophthalmopathy: No role for CTLA-4 but evidence for an environmental etiology. Thyroid 10(9):791–798, 2000PubMedCrossRefGoogle Scholar
  40. 40.
    Tomer Y, et al.: CTLA-4 and not CD28 is a susceptibility gene for thyroid autoantibody production. J Clin Endocrinol Metab 86(4):1687–1693, 2001Google Scholar
  41. 41.
    Busse PJ, Razvi S, Cunningham-Rundles C: Efficacy of intravenous immunoglobulin in the prevention of pneumonia in patients with common variable immunodeficiency. J Allergy Clin Immunol 109(6):1001–1004, 2002PubMedCrossRefGoogle Scholar
  42. 42.
    Cunningham-Rundles C: Clinical and immunologic analyses of 103 patients with common variable immunodeficiency. J Clin Immunol 9(1):22–33, 1989PubMedCrossRefGoogle Scholar
  43. 43.
    Cunningham-Rundles C: Clinical and immunologic studies of common variable immunodeficiency. Curr Opin Pediatr 6(6):676–681, 1994PubMedGoogle Scholar
  44. 44.
    Cunningham-Rundles C, Bodian C: Common variable immunodeficiency: Clinical and immunological features of 248 patients. Clin Immunol 92(1):34–48, 1999PubMedCrossRefGoogle Scholar
  45. 45.
    Ballow M: Primary immunodeficiency disorders: Antibody deficiency. J Allergy Clin Immunol 109(4):581–591, 2002PubMedCrossRefGoogle Scholar
  46. 46.
    Buckley RH: Pulmonary complications of primary immunodeficiencies. Paediatr Respir Rev 5(Suppl 1):S225–S233, 2004Google Scholar
  47. 47.
    Busse PJ, Razvi S, Cunningham-Rundles C: Efficacy of intravenous immunoglobulin in the prevention of pneumonia in patients with common variable immunodeficiency. J Allergy Clin Immunol 109(6):1001–1004, 2002PubMedCrossRefGoogle Scholar
  48. 48.
    Wang J, Cunningham-Rundles C: Treatment and outcome of autoimmune hematologic disease in common variable immunodeficiency (CVID). J Autoimmun 25(1):57–62, 2005PubMedCrossRefGoogle Scholar
  49. 49.
    Cunningham-Rundles C, Radigan L: Deficient IL-12 and dendritic cell function in common variable immune deficiency. Clin Immunol 115(2):147–153, 2005PubMedCrossRefGoogle Scholar
  50. 50.
    Cunningham-Rundles C, et al.: TLR9 activation is defective in common variable immune deficiency. J Immunol 176(3):1978–1987, 2006PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Adina Kay Knight
    • 1
    • 2
  • Davide Serrano
    • 1
    • 3
  • Yaron Tomer
    • 4
  • Charlotte Cunningham-Rundles
    • 1
    • 5
  1. 1.Mount Sinai School of Medicine, Departments of Clinical Immunology and EndocrinologyNew YorkUSA
  2. 2.Allergy and Immunology, LSU-HSCShreveportUSA
  3. 3.European Institute of Oncology Department of ChemopreventionMilanItaly
  4. 4.Division of EndocrinologyUniversity of Cincinnati College of MedicineCincinnatiUSA
  5. 5.Mount Sinai School of MedicineNew YorkUSA

Personalised recommendations