Journal of Clinical Immunology

, Volume 26, Issue 6, pp 546–554 | Cite as

Upregulation of Mitochondrial Gene Expression in PBMC from Convalescent SARS Patients


The observations that Lymphopenia is common in severe acute respiratory syndrome (SARS) patients and that peripheral blood mononuclear cell (PBMC) could be infected by SARS-CoV indicate that PBMC could be useful in identifying the gene expression profile in convalescent patients and tracing the host response to SARS-CoV infection. In this study, the altered genes expressions in the PBMC of convalescent SARS patients were investigated with suppression subtractive hybridization (SSH). We found that genes encoded by mitochondrial DNA (mtDNA) were obviously upregulated, while mitochondria were now found to be closely connected with antiviral immunity. The identification of a viral gene, M, in SSH cDNA library shows the long-term existence of SARS-CoV in vivo. In addition, some oxidative stress sensitive genes, heat shock proteins, transcription factors, and cytokines showed remarkable elevation. Thin-section electron microscope shows increased lysosome-like granule and mitochondria in PBMC of patients. These results provide important intracellular clue for tracing host response to SARS-CoV infection and suggest a role of mitochondria in that process.


Severe acute respiratory syndrome peripheral blood mononuclear cell suppression subtractive hybridization mitochondria 



We thank the SARS affected staffs of the second affiliated hospital of Sun Yat-Sen University for their cooperation with this study. This work was partially supported by the ‘973’ National Key Program for Developing Basic Research (No. 2003CB514110), by the anti-SARS grant from Guangdong Province, and by the European Commission's Sixth Framework Programme under contract number 511060—Development of Intervention Strategies against SARS in a European-Chinese Taskforce (DISSECT).


  1. 1.
    Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, Nicholls J, Yee WKS, Yan WW, Cheung MT, Cheng VCC, Chan KH, Tsang DNC, Yung RWH, Ng TK, Yuen KY, and members of the SARS study group: Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325, 2003Google Scholar
  2. 2.
    Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Corner JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, SARS Working Group: A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966, 2003Google Scholar
  3. 3.
    El-Sahly HM, Atmar RL, Glezen WP, Greenberg SB: Spectrum of clinical illness in hospitalized patients with “Common Cold” virus infections. Clin Infect Dis 31:96–100, 2000PubMedCrossRefGoogle Scholar
  4. 4.
    Falsey AR, Walsh EE, Hayden FG: Rhinovirus and coronavirus infection associated hospitalizations among older adults. J Infect Dis 185:1338–1341, 2002PubMedCrossRefGoogle Scholar
  5. 5.
    Bastien N, Robinson JL, Tse A, Lee BE, Hart L, Li Y: Human coronavirus NL-63 infections in children: A 1-year study. J Clin Microbiol 43:4567–4573, 2005PubMedCrossRefGoogle Scholar
  6. 6.
    Li WH, Moore MJ, Vasilieva N, Sui JH, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454, 2003PubMedCrossRefGoogle Scholar
  7. 7.
    Hofmann H, Pyrc K, Van Der Hoek L, Geier M, Berkhout B, Pohlmann S: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA 102:7988–7993, 2005PubMedCrossRefGoogle Scholar
  8. 8.
    Chiu WK, Cheung PC, Ng KL, Ip PL, Sugunan VK, Luk DC, Ma LC, Chan BH, Lo KL, Lai WM: Severe acute respiratory syndrome in children: Experience in a regional hospital in Hong Kong. Pediatr Crit Care Med 4:279–283, 2003PubMedCrossRefGoogle Scholar
  9. 9.
    Lo AW, Tang NL, To KF: How the SARS coronavirus causes disease: Host or organism? J Pathol 208(2):142–151, 2006PubMedCrossRefGoogle Scholar
  10. 10.
    Li L, Wo J, Shao J, Zhu H, Wu N, Li M, Yao H, Hu M, Dennin RH: SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMC) from SARS patients. J Clin Virol 28:239–244, 2003PubMedCrossRefGoogle Scholar
  11. 11.
    Li TS, Qiu ZF, Zhang LQ, Han Y, He W, Liu ZY, Ma XJ, Fan HW, Lu W, Xie J, Wang H, Deng G, Wang A: Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis 189:648–651, 2004PubMedCrossRefGoogle Scholar
  12. 12.
    McWhirter SM, Tenoever BR, Maniatis T: Connecting mitochondria and innate immunity. Cell 122(5):645–647, 2005PubMedCrossRefGoogle Scholar
  13. 13.
    Seth RB, Sun L, Chen ZJ: Antiviral innate immunity pathways. Cell Res 16(2):141–147, 2006PubMedCrossRefGoogle Scholar
  14. 14.
    Liu W, Tang F, Fontanet A, Zhan L, Zhao QM, Zhang PH, Wu XM, Zuo SQ, Baril L, Vabret A, Xin ZT, Shao YM, Yang H, Cao WC: Long-term SARS coronavirus excretion from patient cohort, China. Emerg Infect Dis 10(10):1841–1843, 2004PubMedGoogle Scholar
  15. 15.
    Chu CM, Leung WS, Cheng VC, Chan KH, Lin AW, Chan VL, Lam JY, Chan KS, Yuen KY: Duration of RT-PCR positivity in severe acute respiratory syndrome. Eur Respir J 25(1):12–14, 2005PubMedCrossRefGoogle Scholar
  16. 16.
    Clayton DA: Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 7:453–478, 1991PubMedCrossRefGoogle Scholar
  17. 17.
    Ojala D, Crews S, Montoya J, Gelfand R, Attardi G: A small polyadenylated RNA (7 S RNA), containing a putative ribosome attachment site, maps near the origin of human mitochondrial DNA replication. J Mol Biol 150(2):303–314, 1981PubMedCrossRefGoogle Scholar
  18. 18.
    Lee DY, Clayton DA: RNase mitochondrial RNA processing correctly cleaves a novel R loop at the mitochondrial DNA leading-strand origin of replication. Genes Dev 11(5):582–592, 1997PubMedGoogle Scholar
  19. 19.
    Donnelly CA, Ghani AC, Leung GM, Hedley AJ, Fraser C, Riley S, Abu-Raddad LJ, Ho LM, Thach TQ, Chau P, Chan KP, Lam TH, Tse LY, Tsang T, Liu SH, Kong JH, Lau EM, Ferguson NM, Anderson RM: Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361(9371):1761–1766, 2003. [Erratum in: Lancet 361(9371):1832, 2003]Google Scholar
  20. 20.
    Kakuda TN: Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 22:685–708, 2000PubMedCrossRefGoogle Scholar
  21. 21.
    Miro O, Lopez S, Rodriguez de la Concepcion M, Martinez E, Pedrol E, Garrabou G, Giralt M, Cardellach F, Gatell JM, Vilarroya F, Casademont J: Upregulatory mechanisms compensate for mitochondrial DNA depletion in asymptomatic individuals receiving stavudine plus didanosine. J Acquir Immune Defic Syndr 37(5):1550–1555, 2004PubMedGoogle Scholar
  22. 22.
    Van Itallie CM: Thyroid hormone and dexamethasone increase the levels of a messenger ribonucleic acid for a mitochondrially encoded subunit but not for a nuclear-encoded subunit of cytochrome c oxidase. Endocrinology 127(1):55–62, 1990PubMedCrossRefGoogle Scholar
  23. 23.
    Miro O, Lopez S, Martinez E, Pedrol E, Milinkovic A, Deig E, Garrabou G, Casademont J, Gatell JM, Cardellach F: Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antiretrovirals. Clin Infect Dis 39(5):710–716, 2004PubMedCrossRefGoogle Scholar
  24. 24.
    Yuan X, Shan Y, Yao Z, Li J, Zhao Z, Chen J, Cong Y: Mitochondrial location of severe acute respiratory syndrome coronavirus 3b protein. Mol Cells 21(2):186–191, 2006PubMedGoogle Scholar
  25. 25.
    Li Q, Wang L, Dong C, Che Y, Jiang L, Liu L, Zhao H, Liao Y, Sheng Y, Dong S, Ma S: The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect. J Clin Virol 34(2):133–139, 2005PubMedCrossRefGoogle Scholar
  26. 26.
    Seth RB, Sun L, Ea CK, Chen ZJ: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF3. Cell 122(5):669–682, 2005PubMedCrossRefGoogle Scholar
  27. 27.
    Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB: VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740, 2005PubMedCrossRefGoogle Scholar
  28. 28.
    Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988, 2005PubMedCrossRefGoogle Scholar
  29. 29.
    Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172, 2005PubMedCrossRefGoogle Scholar
  30. 30.
    Yedavalli VS, Shih HM, Chiang YP, Lu CY, Chang LY, Chen MY, Chuang CY, Dayton AI, Jeang KT, Huang LM: Human immunodeficiency virus type 1 Vpr interacts with antiapoptotic mitochondrial protein HAX-1. J Virol 79(21):13735–13746, 2005PubMedCrossRefGoogle Scholar
  31. 31.
    Carr SM, Carnero E, Garcia-Sastre A, Brownlee GG, Fodor E: Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza viruses. Virology 344(2):492–508, 2006PubMedCrossRefGoogle Scholar
  32. 32.
    Su J, Wang G, Barrett JW, Irvine TS, Gao X, McFadden G: Myxoma virus M11L blocks apoptosis through inhibition of conformational activation of Bax at the mitochondria. J Virol 80(3):1140–1151, 2006PubMedCrossRefGoogle Scholar
  33. 33.
    Hiraragi H, Kim SJ, Phipps AJ, Silic-Benussi M, Ciminale V, Ratner L, Green PL, Lairmore MD: Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13(II) is required for viral infectivity in vivo. J Virol 80(7):3469–3476, 2006PubMedCrossRefGoogle Scholar
  34. 34.
    Miranda S, Foncea R, Guerrero J, Leighton F: Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun 258(1):44–49, 1999PubMedCrossRefGoogle Scholar
  35. 35.
    Lee HC, Yin PH, Lu CY, Chi CW, Wei YH: Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348(Pt 2):425–432, 2000PubMedCrossRefGoogle Scholar
  36. 36.
    Suliman HB, Carraway MS, Welty-Wolf KE, Whorton AR, Piantados CA: Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem 278:41510–41518, 2003PubMedCrossRefGoogle Scholar
  37. 37.
    Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, Yan KW, Chan KH, Tsang NC, Guan Y, Yuen KY, Peiris JS: Lung pathology of fatal severe acute respiratory syndrome. Lancet 361:1773–1778, 2003PubMedCrossRefGoogle Scholar
  38. 38.
    Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, Cai J, Li X, Kang W, Weng D, Lu Y, Wu D, He L, Yao K: The clinical pathology of severe acute respiratory syndrome (SARS): A report from China. J Pathol 200:282–289, 2003PubMedCrossRefGoogle Scholar
  39. 39.
    Quinlan G, Upton R: Oxidant–antioxidant balance in acute respiratory distress syndrome. In: European Respiratory Monograph: ARDS, T Evans, M Griffiths, B. Keogh (eds). European Respiratory Journals Ltd., 2002, pp 33–46Google Scholar
  40. 40.
    Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Louisot P, Lunardi J: Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem 277(22):19396–19401, 2002PubMedCrossRefGoogle Scholar
  41. 41.
    Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G: Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119(4):529–542, 2004PubMedCrossRefGoogle Scholar
  42. 42.
    Reghunathan R, Jayapal M, Hsu LY, Chng HH, Tai D, Leung BP, Melendez AJ: Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunol 6:2, 2005PubMedCrossRefGoogle Scholar
  43. 43.
    Rao GN, Berk BC: Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70(3):593–599, 1992PubMedGoogle Scholar
  44. 44.
    Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11:875–879, 2005PubMedCrossRefGoogle Scholar
  45. 45.
    Wu S, Gao J, Ohlemeyer C, Roos D, Niessen H, Kottgen E, Gessner R: Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes. Free Radic Biol Med 39(12):1601–1610, 2005PubMedCrossRefGoogle Scholar
  46. 46.
    He R, Leeson A, Andonov A, Li Y, Bastien N, Cao J, Osiowy C, Dobie F, Cutts T, Ballantine M, Li X: Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 311:870–876, 2003PubMedCrossRefGoogle Scholar
  47. 47.
    Forrest MS, Lan Q, Hubbard AE, Zhang L, Vermeulen R, Zhao X, Li G, Wu YY, Shen M, Yin S, Chanock SJ, Rothman N, Smith MT: Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers. Environ Health Perspect 113(6):801–807, 2005PubMedCrossRefGoogle Scholar
  48. 48.
    Sheets P, Carlson G: Kinetic factors involved in the metabolism of benzene in mouse lung and liver. J Toxicol Environ Health A 67(5):421–430, 2004PubMedGoogle Scholar
  49. 49.
    Rana SV, Verma Y: Biochemical toxicity of benzene. J Environ Biol 26(2):157–168, 2005PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

    • 1
    • 1
    • 2
    • 1
    • 2
    • 1
    • 2
    • 1
    • 1
    • 1
  1. 1.State Key Laboratory of Biocontrol, Department of BiochemistryCollege of Life Sciences, Sun Yat-sen (Zhongshan) UniversityGuangzhouP. R. China
  2. 2.The Second Affiliated Hospital, Sun Yat-sen (Zhongshan) UniversityGuangzhouP. R. China

Personalised recommendations