Journal of Clinical Immunology

, Volume 25, Issue 6, pp 534–540 | Cite as

NKG2D in NK and T Cell-Mediated Immunity



One of the best characterized NK cell receptors is NKG2D, a highly conserved C-type lectin-like membrane glycoprotein expressed on essentially all NK cells, as well as on γδ-TcR+ T cells and αβ-TcR+ CD8+ T cells, in humans and mice. Here we review recent studies implicating NKG2D in T cell and NK cell-mediated immunity to viruses and tumors, and its potential role in autoimmune diseases and allogeneic bone marrow transplantation.

Key Words

NK cells NKG2D DAP10 RAE-1 MICA autoimmunity bone marrow transplantation T cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T: Activation of natural killer cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–730, 1999PubMedCrossRefGoogle Scholar
  2. 2.
    Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH: An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732, 1999PubMedGoogle Scholar
  3. 3.
    Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH: The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17:19–29, 2002PubMedCrossRefGoogle Scholar
  4. 4.
    Houchins JP, Yabe T, McSherry C, Bach FH: DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med. 173:1017–1020, 1991PubMedCrossRefGoogle Scholar
  5. 5.
    Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E, Raulet DH: Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3:1142–1149, 2002PubMedCrossRefGoogle Scholar
  6. 6.
    Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M: NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 3:1150–1155, 2002PubMedCrossRefGoogle Scholar
  7. 7.
    Rosen DB, Araki M, Hamerman JA, Chen T, Yamamura T, Lanier LL: A structural basis for the association of DAP12 with mouse, but not human, NKG2D. J Immunol 173:2470–2478, 2004PubMedGoogle Scholar
  8. 8.
    Wu J, Cherwinski H, Spies T, Phillips JH, Lanier LL: DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J Exp Med 192:1059–1068, 2000PubMedCrossRefGoogle Scholar
  9. 9.
    Garrity D, Call ME, Feng J, Wucherpfennig KW: The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci USA 102:7641–7646, 2005PubMedCrossRefGoogle Scholar
  10. 10.
    Wu J, Song Y, Bakker ABH, Bauer S, Groh V, Spies T, Lanier LL, Phillips JH: An activating receptor complex on natural killer and T cells formed by NKG2D and DAP10. Science 285:730–732, 1999PubMedGoogle Scholar
  11. 11.
    Chang C, Dietrich J, Harpur AG, Lindquist JA, Haude A, Loke YW, King A, Colonna M, Trowsdale J, Wilson MJ: Cutting edge: KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties. J Immunol 163:4651–4654, 1999PubMedGoogle Scholar
  12. 12.
    Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH: Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391:703–707, 1998PubMedCrossRefGoogle Scholar
  13. 13.
    Cerwenka A, Lanier LL: NKG2D ligands: Unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigens 61:335–343, 2003PubMedCrossRefGoogle Scholar
  14. 14.
    Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790, 2003PubMedCrossRefGoogle Scholar
  15. 15.
    Lanier LL: NK Cell recognition. Annu Rev Immunol 23:225–274, 2005PubMedCrossRefGoogle Scholar
  16. 16.
    Malarkannan S, Shih PP, Eden PA, Horng T, Zuberi AR, Christianson G, Roopenian D, Shastri N: The molecular and functional characterization of a dominant minor H antigen, H60. J Immunol 161:3501–3509, 1998PubMedGoogle Scholar
  17. 17.
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T: Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729, 1999PubMedCrossRefGoogle Scholar
  18. 18.
    Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ: ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133, 2001PubMedCrossRefGoogle Scholar
  19. 19.
    Radosavljevic M, Cuillerier B, Wilson MJ, Clement O, Wicker S, Gilfillan S, Beck S, Trowsdale J, Bahram S: A cluster of ten novel MHC class I related genes on human chromosome 6q24.2–q25.3. Genomics 79:114–123, 2002PubMedCrossRefGoogle Scholar
  20. 20.
    Jan Chalupny N, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D: ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun 305:129–135, 2003PubMedCrossRefGoogle Scholar
  21. 21.
    Bacon L, Eagle RA, Meyer M, Easom N, Young NT, Trowsdale J: Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol 173:1078–1084, 2004PubMedGoogle Scholar
  22. 22.
    Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH, Lanier LL: Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12:721–727, 2000PubMedCrossRefGoogle Scholar
  23. 23.
    Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH: Ligands for the murine NKG2D receptor: Expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1:119–126, 2000PubMedCrossRefGoogle Scholar
  24. 24.
    Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM: Cutting edge: Murine UL16-binding protein-like transcript. 1: A newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 169:4079–4083, 2002PubMedGoogle Scholar
  25. 25.
    Hamerman JA, Ogasawara K, Lanier LL: Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol 172:2001–2005, 2004PubMedGoogle Scholar
  26. 26.
    Lodoen M, Ogasawara K, Hamerman JA, Arase H, Houchins JP, Mocarski ES, Lanier LL: NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 197:1245–1253, 2003PubMedCrossRefGoogle Scholar
  27. 27.
    Lodoen MB, Abenes G, Umamoto S, Houchins JP, Liu F, Lanier LL: The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60—NKG2D interactions. J Exp Med 200:1075–1081, 2004PubMedCrossRefGoogle Scholar
  28. 28.
    Krmpotic A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S: MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3:529–535, 2002PubMedCrossRefGoogle Scholar
  29. 29.
    Dandekar AA, O'Malley K, Perlman S: Important roles for gamma interferon and NKG2D in gammadelta T-cell-induced demyelination in T-cell receptor beta-deficient mice infected with a coronavirus. J Virol 79:9388–9396, 2005PubMedCrossRefGoogle Scholar
  30. 30.
    Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T: Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93:12445–12450, 1996PubMedCrossRefGoogle Scholar
  31. 31.
    Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T: Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 96:6879–6884, 1999PubMedCrossRefGoogle Scholar
  32. 32.
    Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T: Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260, 2001PubMedCrossRefGoogle Scholar
  33. 33.
    Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF: MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93, 2001PubMedCrossRefGoogle Scholar
  34. 34.
    Gasser S, Orsulic S, Brown EJ, Raulet DH: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature, 436:1186–1190, 2005PubMedCrossRefGoogle Scholar
  35. 35.
    Groh V, Bruhl A, El-Gabalawy H, Nelson JL, Spies T: Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 100:9452–9457, 2003PubMedCrossRefGoogle Scholar
  36. 36.
    Ogasawara K, Hamerman JA, Ehrlich LR, Bour-Jordan H, Santamaria P, Bluestone JA, Lanier LL: NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20:757–767, 2004PubMedCrossRefGoogle Scholar
  37. 37.
    Krmpotic A, Hasan M, Loewendorf A, Saulig T, Halenius A, Lenac T, Polic B, Bubic I, Kriegeskorte A, Pernjak-Pugel E, Messerle M, Hengel H, Busch DH, Koszinowski UH, Jonjic S: NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 201:211–220, 2005PubMedCrossRefGoogle Scholar
  38. 38.
    Rolle A, Mousavi-Jazi M, Eriksson M, Odeberg J, Soderberg-Naucler C, Cosman D, Karre K, Cerboni C: Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: Up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171:902–908, 2003PubMedGoogle Scholar
  39. 39.
    Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV, Johnson DC, Cosman D: Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 197:1427–1439, 2003PubMedCrossRefGoogle Scholar
  40. 40.
    Wu J, Chalupny NJ, Manley TJ, Riddell SR, Cosman D, Spies T: Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J Immunol 170:4196–4200, 2003PubMedGoogle Scholar
  41. 41.
    Welte SA, Sinzger C, Lutz SZ, Singh-Jasuja H, Sampaio KL, Eknigk U, Rammensee HG, Steinle A: Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol 33:194–203, 2003PubMedCrossRefGoogle Scholar
  42. 42.
    Zou Y, Bresnahan W, Taylor RT, Stastny P: Effect of human cytomegalovirus on expression of MHC class I-related chains A. J Immunol 174:3098–3104, 2005PubMedGoogle Scholar
  43. 43.
    Siren J, Sareneva T, Pirhonen J, Strengell M, Veckman V, Julkunen I, Matikainen S: Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 85:2357–2364, 2004PubMedCrossRefGoogle Scholar
  44. 44.
    Cerwenka A, Baron JL, Lanier LL: Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521–11526, 2001PubMedCrossRefGoogle Scholar
  45. 45.
    Diefenbach A, Jensen ER, Jamieson AM, Raulet DH: Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171, 2001PubMedCrossRefGoogle Scholar
  46. 46.
    Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A, Sayers TJ, Hayakawa Y: NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200:1325–1335, 2004PubMedCrossRefGoogle Scholar
  47. 47.
    Takaki R, Hayakawa Y, Nelson A, Sivakumar PV, Hughes S, Smyth MJ, Lanier LL: IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 175:2167–2173, 2005PubMedGoogle Scholar
  48. 48.
    Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R, Kubin M, Cosman D, Ferrone S, Moretta L, Moretta A: Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: Analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 62:6178–6186, 2002PubMedGoogle Scholar
  49. 49.
    Westwood JA, Kelly JM, Tanner JE, Kershaw MH, Smyth MJ, Hayakawa Y: Cutting edge: Novel priming of tumor-specific immunity by NKG2D-triggered NK cell-mediated tumor rejection and Th1-independent CD4+ T cell pathway. J Immunol 172:757–761, 2004PubMedGoogle Scholar
  50. 50.
    Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y: NKG2D function protects the host from tumor initiation. J Exp Med, 202:583–588, 2005PubMedGoogle Scholar
  51. 51.
    Groh V, Wu J, Yee C, Spies T: Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738, 2002PubMedCrossRefGoogle Scholar
  52. 52.
    Salih HR, Rammensee HG, Steinle A: Cutting edge: Down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169:4098–4102, 2002PubMedGoogle Scholar
  53. 53.
    Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O'Reilly RJ, Dupont B, Vyas YM: Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891–6899, 2003PubMedGoogle Scholar
  54. 54.
    Ogasawara K, Hamerman JA, Hsin H, Chikuma S, Bour-Jordan H, Chen T, Pertel T, Carnaud C, Bluestone JA, Lanier LL: Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18:41–51, 2003PubMedCrossRefGoogle Scholar
  55. 55.
    Ogasawara K, Benjamin J, Takaki R, Phillips JH, Lanier LL: Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. Nat Immunol, 6:938–945, 2005PubMedCrossRefGoogle Scholar
  56. 56.
    Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi M, Hayday AC: Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937, 2005PubMedCrossRefGoogle Scholar
  57. 57.
    Wiemann K, Mittrucker HW, Feger U, Welte SA, Yokoyama WM, Spies T, Rammensee HG, Steinle A: Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175:720–729, 2005PubMedGoogle Scholar
  58. 58.
    Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A: Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125, 2003PubMedCrossRefGoogle Scholar
  59. 59.
    Lee JC, Lee KM, Kim DW, Heo DS: Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340, 2004PubMedGoogle Scholar
  60. 60.
    Kiessling R, Hochman PS, Haller O, Shearer GM, Wigzell H, Cudkowicz G: Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur J Immunol 7:655–663, 1977PubMedGoogle Scholar
  61. 61.
    Lotzova E, Savary CA, Pollack SB: Prevention of rejection of allogeneic bone marrow transplants by NK 1.1 antiserum. Transplantation 35:490–494, 1983PubMedCrossRefGoogle Scholar
  62. 62.
    Murphy WJ, Kumar V, Bennett M: Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized. J Exp Med 166:1499–1509, 1987Google Scholar
  63. 63.
    Cudkowicz G, Stimpfling JH: Induction of immunity and of unresponsiveness to parental marrow grafts in adult F-1 hybrid mice. Nature 204:450–453, 1964PubMedGoogle Scholar
  64. 64.
    Cudkowicz G, Bennett M: Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J Exp Med 134:1513–1528, 1971PubMedGoogle Scholar
  65. 65.
    Rembecki RM, Kumar V, David CS, Bennett M: Bone marrow cell transplants involving intra-H-2 recombinant inbred mouse strains. Evidence that hemopoietic histocompatibility-1 (Hh-1) genes are distinct from H-2D or H-2L. J Immunol 141:2253–2260, 1988PubMedGoogle Scholar
  66. 66.
    Sentman CL, Kumar V, Bennett M: Rejection of bone marrow cell allografts by natural killer cell subsets: 5E6+ cell specificity for Hh-1 determinant 2 shared by H-2d and H-2f. Eur J Immunol 21:2821–2828, 1991PubMedGoogle Scholar
  67. 67.
    Yu YYL, Kumar V, Bennett M: Murine natural killer cells and marrow graft rejection. Annu Rev Immunol 10:189–214, 1992PubMedCrossRefGoogle Scholar
  68. 68.
    Raziuddin A, Longo DL, Mason L, Ortaldo JR, Murphy WJ: Ly-49 G2+ NK cells are responsible for mediating the rejection of H-2b bone marrow allografts in mice. Int Immunol 8:1833–1839, 1996PubMedGoogle Scholar
  69. 69.
    Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L, Cosman D, De Libero G, Wodnar-Filipowicz A: Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105:3615–3622, 2005PubMedCrossRefGoogle Scholar
  70. 70.
    Poirot L, Benoist C, Mathis D: Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA 101:8102–8107, 2004PubMedCrossRefGoogle Scholar
  71. 71.
    Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, Ebert EC, Green PH, Jabri B: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366, 2004PubMedCrossRefGoogle Scholar
  72. 72.
    Setiady YY, Pramoonjago P, Tung KS: Requirements of NK cells and proinflammatory cytokines in T cell-dependent neonatal autoimmune ovarian disease triggered by immune complex. J Immunol 173:1051–1058, 2004PubMedGoogle Scholar
  73. 73.
    Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, Van Kaer L, Ljunggren HG: Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 1:245–251, 2000PubMedCrossRefGoogle Scholar
  74. 74.
    Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S: A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–377, 2004PubMedCrossRefGoogle Scholar
  75. 75.
    Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, Jabri B: Cutting edge: NKG2D receptors induced by IL-15 costimulate CD28- negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530., 2001PubMedGoogle Scholar
  76. 76.
    Anderson MS, Bluestone JA: The NOD mouse: A model of immune dysregulation. Annu Rev Immunol 23:447–485, 2005PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Microbiology & Immunology and Cancer Research InstituteUniversity of CaliforniaSan Francisco
  2. 2.Department of Intractable Diseases, Division of Clinical Immunology, The Research InstituteInternational Medical Center of JapanTokyoJapan
  3. 3.Department of Microbiology & Immunology and Cancer Research InstituteUniversity of CaliforniaSan Francisco

Personalised recommendations