Journal of Clinical Immunology

, Volume 25, Issue 3, pp 215–223 | Cite as

Involvement of c-Jun N-Terminal Kinase in rF1 Mediated Activation of Murine Peritoneal Macrophages In Vitro

  • Rajesh Kumar Sharma
  • Ajit Sodhi
  • Harsh Vardhan Batra


Fraction 1 (F1) protein forms a capsule on the surface of Yersinia pestis. Recently, we reported rF1-induced activation of macrophages. In current investigation, we studied the role of JNK MAPK signal transduction pathway in rF1-induced activation of macrophages in vitro. SP600125, a specific inhibitor of JNK, inhibited JNK MAPK phosphorylation, indicating the specificity of the above response. Though, the rF1-induced phosphorylation of JNK MAPK was also inhibited by upstream protein kinase C inhibitor H7, tyrosine kinase inhibitor genestein and PI3-K inhibitor wotmannin. Activation of the transcription factor NF-kB (phosphorylation of IkB) and c-Jun was observed in response to rF1 treatment. The rF1-induced JNK MAPK activity was correlated to the functional activation of macrophages by demonstrating the inhibition of NO, TNF-α production and microtubule polymerization caused by SP600125. Taken together, the data suggests the involvement of JNK MAPK/NF-kB pathway in rF1-induced activation of macrophages.

Key Words

rF1 antigen Yersinia pestis macrophage MAP kinases JNK 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, Sory MP, Stainier I: The virulence plasmid of yersinia, an antihost genome. Microbiol Mol Biol Rev 62:1315–1352, 1998PubMedGoogle Scholar
  2. 2.
    Simonet M, Richard S, Berche P: Electron microscopic evidence for in vivo extracellular localization of Yersinia pseudotuberculosis harboring the pYV plasmid. Infect Immun 59:841–845, 1990Google Scholar
  3. 3.
    Cornelis GR: How Yops find their way out of Yersinia. Mol Microbiol 50:1091–1094, 2003CrossRefPubMedGoogle Scholar
  4. 4.
    Galan JE, Collmer A: Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328, 1999CrossRefPubMedGoogle Scholar
  5. 5.
    Cornelis GR: The Yersinia deadly kiss. J Bacteriol 180:5495–4504, 1998PubMedGoogle Scholar
  6. 6.
    Protsenko OA, Anisimov PI, Mosarov OT, Donnov NP, Popov YA, Kokushkin AM: Detection and characterization of Yersinia pestis plasmids determining pesticin 1 fraction 1 antigen and mouse toxin synthesis. Genetica 19:1081–1090, 1983Google Scholar
  7. 7.
    Cherepanov PA, Mikhailova TG, Karimova GA, Zakharova NM, Ershov Y, Volvoi KI: Clonning and detailed mapping of the pFra-ymt region of the Yersinia pestis plasmid pFra. Mol Gen Mikrobiol Virusol 18:19–26, 1991Google Scholar
  8. 8.
    Brown SD, Montie TC: Beta-adrenergic blocking activity of Yersinia pestis murine toxin. Infect Immun 12:85–93, 1977Google Scholar
  9. 9.
    Brubaker RR: Factors promoting acute and chronic disease caused by yersiniae. Clin Microbiol Rev 4:309–324, 1991PubMedGoogle Scholar
  10. 10.
    Galyov EE, Smirnov O, Karlishev AV, Volvoi KI, Denesyuk AI, Nazimov IV, Rubtsov KS, Abramov VM, Dalvadyanz SM, Zavyalov VP: Nucleotide sequence of the Yersinia pestis gene encoding F1 antigen and the primary structure of the protein: Putative T cell and B cell epitopes. FEBS Lett 257:230–232, 1990CrossRefGoogle Scholar
  11. 11.
    Galyov EE, Karlishev AV, Chernovskaya TV, Dolgikh DA, Smirnov O, Volvoi KI, Abramov VM, Zavyalov VP: Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of the Caf1M gene having homology with the chaperon protein Pap D of Escherichia coli. FEBS Lett 286:79–82, 1991CrossRefPubMedGoogle Scholar
  12. 12.
    Karlishev AV, Galyov EE, Smirnov O, Gazayev AP, Abramov VM, Zavyalov VP: A new gene of the f1 operon of Y. pestis is involved in the capsule biogenesis. FEBS Lett 297:77–80, 1992CrossRefPubMedGoogle Scholar
  13. 13.
    Sabhnani L, Rao DN: Identification of immunodominant epitope of F1 antigen of Yersinia pestis. FEMS Immunol Med Microbiol 27:155–162, 2002CrossRefGoogle Scholar
  14. 14.
    Isupov IV, Nazarova LS, Pavlova LP, Gor’kova AV, Revazova ES, Dushkin VA, Zadumina S, Surikov NN, Taranenko TM, Dzhaparidze MN, et al.: The effect of different Yersinia pestis antigens on the cellular link in immunity. Zh Mikrobiol Epidemiol Immunobiol 9:82–89, 1990Google Scholar
  15. 15.
    Grebtsova NN, Cherniavskaia AS, Lebedeva SA, Ivanova VS: The phagocytic activity of peritoneal macrophages in relation to Yersinia pestis with defective and complete Fra genes. Zh Mikrobiol Epidemiol Immunobiol 5:7–11, 1990PubMedGoogle Scholar
  16. 16.
    Vasilleva GI, Deroshenko EP, Kiseleva AK: Changes in the “latent” virulence of a vaccinal strain of Yersinia pestis multiplying within macrophages. Zh Mikrobiol Epidemiol Immunobiol 9:63–66, 1988PubMedGoogle Scholar
  17. 17.
    Blenis J: Signal transduction via the MAP kinases: Proceed at your Own RSK. Proc Natl Acad Sci 90:5889–5892, 1993PubMedGoogle Scholar
  18. 18.
    Chang L, Karin M: Mammalian MAP Kinase signaling cascades. Nature 410:37–40, 2001CrossRefPubMedGoogle Scholar
  19. 19.
    Dong C, Davis RJ, Flavell RA: MAP Kinases in the immune response. Annu Rev Immunol 20:55–72, 2002CrossRefPubMedGoogle Scholar
  20. 20.
    Lee FS, Hagler J, Chen ZJ, Maniatis T: Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–222, 1997CrossRefPubMedGoogle Scholar
  21. 21.
    Kyriakis JM, Avruch J: Mammalian Mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869, 2001PubMedGoogle Scholar
  22. 22.
    Hirano M, Osada S, Aoki T, Hirai S, Hosaka M, Inoue J: MEK kinase involved in tumor necrosis factor α-induced NF-κB activation and degradation of IκB-α. J Biol Chem 271: 13234–13238, 1996CrossRefPubMedGoogle Scholar
  23. 23.
    Wright SD, Kolesnick RN: Does endotoxin stimulate cells by mimicking ceramide? Immunol Today 16:297–302, 1995CrossRefPubMedGoogle Scholar
  24. 24.
    Adams DO, Hamilton TA: The Cell biology of macrophages activation. Annu Rev Immunol 2:283–318, 1984CrossRefPubMedGoogle Scholar
  25. 25.
    Adams DO, Hamilton TA, Macrophages as destructive cells in host defense. In JI Gallin, IM Goldstein, R Snyderman (eds). Inflammation Basic Principles and Clinical Correlates. 2nd edn. New York, Raven press, 1992, pp 637–662Google Scholar
  26. 26.
    Germain RN, Margulies DH: The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 11:403–450, 1993CrossRefPubMedGoogle Scholar
  27. 27.
    Ding A, Chen B, Fuortes M, Blum E: Association of mitogen-activated protein kinases with microtubules in mouse macrophages. J Exp Med 183:1899–1904, 1996CrossRefPubMedGoogle Scholar
  28. 28.
    Sodhi A, Singh RK, Singh SM: Effect of IFN-γ priming of murine peritoneal macrophages on the activation of tumoricidal state by IL-1, TNF and cisplatin. Clin Exp Immunol 888:350–355, 1992Google Scholar
  29. 29.
    Mizel SB: Interleukin and T-cell activation. Immunol Rev 63:51–72, 1982PubMedGoogle Scholar
  30. 30.
    Sodhi A, Sharma RK, Batra HV, Tuteja U: Recombinant Fraction 1 protein of Y. pestis activates murine peritoneal macrophages in vitro. Cell Immunol 229:52–61, 2004CrossRefPubMedGoogle Scholar
  31. 31.
    Sharma RK, Sodhi A, Batra HV, Tuteja U: Effect of rLcrV and rYopB from Yersinia pestis on murine peritoneal macrophages in vitro. Immunol Lett 93:179–187, 2004CrossRefPubMedGoogle Scholar
  32. 32.
    Sodhi A, Biswas SK: fMLP-induced in vitro nitric oxide production and its regulation in murine peritoneal macrophages. J Leukoc Biol 71:262–270, 2002PubMedGoogle Scholar
  33. 33.
    Sodhi A, Sethi G: Involvement of MAP Kinase signal transduction pathway in UVB induced activation of macrophages in vitro. Immunol Lett 90:123–130, 2003CrossRefPubMedGoogle Scholar
  34. 34.
    Chan ED, Winston BW, Uh ST, Wynes MW, Rose DM, Riches DW: Evaluation of the role of mitogen-activated protein kinases in the expression of inducible nitric oxide synthase by IFN-gamma and TNF-alpha in mouse macrophages. J Immunol 162:415–422, 1999PubMedGoogle Scholar
  35. 35.
    Kukharskyy V, Sulimenko V, Macurek L, Sulimenko T, Draberova E, Draber P: Complexes of gamma-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells. Exp Cell Res 298:218–228, 2004CrossRefPubMedGoogle Scholar
  36. 36.
    Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M: JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 4:521–533, 2003CrossRefPubMedGoogle Scholar
  37. 37.
    Huang C, Jacobson K, Schaller MD: MAP kinases and cell migration. J Cell Sci 117:4619–4628, 2004PubMedGoogle Scholar
  38. 38.
    Kirikae T, Kirikae F, Oghiso Y, Nakano M: Microtubule-disrupting agents inhibit nitric oxide production in murine peritoneal macrophages stimulated with lipopolysaccharide or paclitaxel (Taxol). Infect Immun 64:3379–3384, 1996PubMedGoogle Scholar
  39. 39.
    Damiani MT, Colombo MI: Microfilaments and microtubules regulate recycling from phagosomes. Exp Cell Res 289:152–161, 2003CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Rajesh Kumar Sharma
    • 1
  • Ajit Sodhi
    • 1
    • 3
  • Harsh Vardhan Batra
    • 2
  1. 1.School of BiotechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Division of MicrobiologyDefense R&D EstablishmentGwaliorIndia
  3. 3.School of BiotechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations