Journal of Clinical Immunology

, Volume 25, Issue 2, pp 142–152 | Cite as

Immunogenic Properties of a Chimeric Plant Virus Expressing a Hepatitis C Virus (HCV)-Derived Epitope: New Prospects for an HCV Vaccine

  • G. Piazzolla
  • M. Nuzzaci
  • C. Tortorella
  • E. Panella
  • A. Natilla
  • D. Boscia
  • A. De Stradis
  • P. Piazzolla
  • S. Antonaci


A vaccine against Hepatitis C virus (HCV) is urgently needed due to the unsatisfactory clinical response to current therapies. We evaluated the immunological properties of a chimeric Cucumber mosaic virus (CMV), a plant virus engineered to express on its surface a synthetic peptide derived from many HVR1 sequences of the HCV envelope protein E2 (R9 mimotope). Evidence was obtained that the chimeric R9-CMV elicits a specific humoral response in rabbits. Furthermore, in patients with chronic HCV infection, purified preparations of R9-CMV down-modulated the lymphocyte surface density of CD3 and CD8, and induced a significant release of interferon (IFN)-γ, interleukin (IL)-12 p70 and IL-15 by lymphomonocyte cultures. Finally, an R9 mimotope-specific CD8 T-cell response, as assessed by intracellular IFN-γ production, was achieved in the majority of the patients studied. Our results open up new prospects for the development of effective vaccines against HCV infection. Moreover, the wide edible host range of CMV makes the production of an edible vaccine conceivable.


HCV vaccine T lymphocytes cytokines CMV plant viruses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wasley A, Alter MJ: Epidemiology of hepatitis C: Geographic, differences and temporal trends. Semin Liver Dis 20:1–16, 2000Google Scholar
  2. 2.
    Lechmann M, Ihlenfeldt HG, Braunschweiger I, Giers G, Jung G, Matz B, et al.: T- and B-cell responses to different hepatitis C virus antigens in patients with chronic hepatitis C infection and in healthy anti-hepatitis C virus-positive blood donors without viremia. Hepatology 24:790–795, 1996CrossRefPubMedGoogle Scholar
  3. 3.
    Rehermann B, Chisari FV: Cell mediated immune response to the hepatitis C virus. Curr Top Microbiol Immunol 242:299–325, 2000Google Scholar
  4. 4.
    Freeman AJ, Marines G, French RA, Lloyd AR: Immuno-pathogenesis of hepatitis C virus infection. Immunol Cell Biol 79:515–536, 2001Google Scholar
  5. 5.
    Memon ML, Memon MA: Hepatitis C: An epidemiological review. J Viral Hepatol 9:84–100, 2002Google Scholar
  6. 6.
    Rosenberg S: Recent advances in the molecular biology of hepatitis C virus. J Mol Biol 313:451–464, 2001Google Scholar
  7. 7.
    Manns MP, McHutchinson JC, Gordon SC, Rustgi VK, Shiffman ML, Reindollar R, et al.: Peginterferon α-2b plus ribavirin compared with interferon α-2b plus ribavirin for initial treatment of chronic hepatitis C: A randomised trial. Lancet 358:958–965, 2001CrossRefGoogle Scholar
  8. 8.
    Lechner F, Wong D, Dunbar P, Chapman R, Chung R, Dohrenwend P, Robbins G, et al.: Analysis of a successful immune response in persons infected with hepatitis C virus. J Exp Med 191:1499–1512, 2000Google Scholar
  9. 9.
    Ferrari C, Valli A, Galati L, Penna A, Scaccaglia P, Giuberti T, et al.: T-cell response to structural and nonstructural Hepatitis C virus antigens in persistent and self-limited Hepatitis C virus infections. Hepatology 19:286–295, 1994Google Scholar
  10. 10.
    Missale G, Bertoni R, Lamonaca V, Valli A, Massari M, Mori C, et al.: Different clinical behaviours of acute hepatitis C virus infection are associated with different vigor of the anti-viral cell-mediated immune response. J Clin Invest 98:706–714, 1996Google Scholar
  11. 11.
    Lechner F, Gruener NH, Urbani S, Uggeri J, Santantonio T, Kammer AR, et al.: CD8+ T lymphocyte responses are induced during acute hepatitis C virus infection but are not sustained. Eur J Immunol 30:2479–2487, 2000Google Scholar
  12. 12.
    Takaki A, Wiese M, Maertens G, Depla E, Seifert U, Liebetrau A, et al.: Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat Med 6:578–582, 2000Google Scholar
  13. 13.
    Houghton M: Strategies and prospects for vaccination against the hepatitis C virus. Curr Top Microbiol Immunol 242:327–329, 2000Google Scholar
  14. 14.
    Lechmann M, Liang TJ: Vaccine development for hepatitis C. Semin Liver Dis 20:211–226, 2000Google Scholar
  15. 15.
    Robertson B, Myers G, Howard C, Brettin T, Bukh J, Gaschen B, et al.: Classification, nomenclature and database development for hepatitis C virus (HCV) and related viruses: Proposals for standardization. International Committee on Virus Taxonomy. Arch Virol 143:2493–2503, 1998CrossRefPubMedGoogle Scholar
  16. 16.
    Shimizu YK, Igarashi H, Kiyohara T, Cabezon T, Farci P, Purcell RH, et al.: A hyperimmune serum against a synthetic peptide corresponding to the hypervariable region 1 of hepatitis C virus can prevent viral infection in cell cultures. Virology 223:409–412, 1996Google Scholar
  17. 17.
    Farci P, Shimoda A, Wong D, Cabezon T, De Gioannis D, Strazzera A, et al.: Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc Natl Acad Sci USA 93:15394–15399, 1996Google Scholar
  18. 18.
    Savelyeva N, Munday R, Spellerberg MB, Lomonossoff GP, Stevenson FK: Plant viral genes in DNA idiotypic vaccines activate linked CD4+ T-cell mediated immunity against B-cell malignancies. Nat Biotechnol 19:760–764, 2001Google Scholar
  19. 19.
    McLain L, Porta C, Lomonossoff GP, Durrani Z, Dimmock NJ: Human immunodeficiency virus type 1 neutralizing antibodies raised to a gp41 peptide expressed on the surface of a plant virus. AIDS Res Hum Retroviruses 11:327–334, 1995Google Scholar
  20. 20.
    McLain L, Durrani Z, Wisniewski LA, Porta C, Lomonossoff GP, Dimmock NJ: Stimulation of neutralizing antibodies to human immunodeficiency virus type 1 in three strains of mice immunized with a 22-mer amino acid peptide expressed on the surface of a plan virus. Vaccine 14:799–810, 1996Google Scholar
  21. 21.
    Marusic C, Rizza P, Lattanzi L, Mancini C, Spada M, Belardelli F, et al.: Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. J Virol 75:8434–8439, 2001Google Scholar
  22. 22.
    Natilla A, Piazzolla G, Nuzzaci M, Saldarelli P, Tortorella C, Antonaci S, et al.: Cucumber mosaic virus as a carrier of a hepatitis C virus-derived epitope. Arch Virol 149:137–154, 2004Google Scholar
  23. 23.
    Puntoriero G, Meola A, Lahm A, Zucchelli S, Bruni EB, Tafi R, et al.: Towards a solution for hepatitis C hypervariability: Mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants. EMBO J 17:3521–3533, 1998Google Scholar
  24. 24.
    Lot H, Marrou J, Quiot JB, Esvan C: Contribution à I’étude du virus de la mosaique du concombre (CMV). I: Methode de purification rapide du virus. Ann Phytopathol 14:25–38, 1972Google Scholar
  25. 25.
    Scheuer PJ: Classification of chronic viral hepatitis: A need for reassessment. J Hepatol 13:372–374, 1991PubMedGoogle Scholar
  26. 26.
    Usha R, Rohll JB, Spall VE, Shanks M, Maule AJ, Johnson JE, et al.: Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197:366–374, 1993Google Scholar
  27. 27.
    Porta C, Spall VE, Loveland J, Johnson JE, Barker PJ, Lomonosoff GP: Development of cowpea mosaic virus as a high-yielding system for the presentation of foreign peptides. Virology 202:949–955, 1994Google Scholar
  28. 28.
    Turpen TH, Reinl SJ, Charoenvit Y, Hoffman SL, Fallarme V, Grill L: Malarial epitopes expressed on the surface of reeombinant tobacco mosaic vrus. Biotechnology 13:53–57, 1995Google Scholar
  29. 29.
    Fitchen J, Beachy RN, Hein MB: Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibodies response. Vaccine 13:1051–1057, 1995Google Scholar
  30. 30.
    Nemchinov LG, Liang TJ, Rifaat MM, Mazyad HM, Hadidi A, Keith JM: Development of a plant-derived subunit vaccine candidate against hepatitis C virus. Arch Virol 145:2557–2573, 2000Google Scholar
  31. 31.
    Arazi T, Huang PL, Huang P, Zhang L, Shiboleth YM, Gal-On A, Lee-Huang S: Production of antiviral and antitumor proteins MAP30 and GAP31 in cucurbits using the plant virus vector ZYMV-AGII. Biochem Biophys Res Commun 292:441–448, 2002Google Scholar
  32. 32.
    Nicholas BL, Brennan FR, Martinez-Torrecuadrada JL, Casal JI, Hamilton WD, Wakelin D: Characterization of the immune response to canine parvovirus induced by vaccination with chimaeric plant viruses. Vaccine 20:2727–2734, 2002Google Scholar
  33. 33.
    Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, et al.: Expression in plants and inimunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20:3155–3164, 2002Google Scholar
  34. 34.
    Yusibov V, Koprowski H: Plants as vector for biomedical products. J Med Food 1:5–12, 1998Google Scholar
  35. 35.
    Giddings G, Allison G, Brooks D, Carter A: Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155, 2000Google Scholar
  36. 36.
    Ashwell JD, Weissman AM: T-cell antigen receptor genes, gene products and coreceptors. In Clinical Immunology, 5th edn, Vol. 1, RR Rich, TA Fleisher, WT Shearer, BL Kotzin, HW Schroeder (eds). London, Mosby, 2001, pp 5.1–5.19Google Scholar
  37. 37.
    Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A: Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med 181:577–584, 1995Google Scholar
  38. 38.
    Valitutti S, Muller S, Dessing M, Lanzavecchia A: Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med 183:1917–1921, 1996Google Scholar
  39. 39.
    Viola A, Lanzavecchia A: T cell activation determined by T cell receptor number and tunable thresholds. Science (Wash DC) 273:104–106, 1996Google Scholar
  40. 40.
    Cai Z, Kishimoto H, Brunmark A, Jackson MR, Peterson PA, Sprent J: Requirements for peptide-induced T cell receptor downregulation on naive CD8+ T cells. J Exp Med 185:641–651, 1997Google Scholar
  41. 41.
    Trimble LA, Kam LW, Friedman RS, Xu Z, Lieberman J: CD3ζ and CD28 down-modulation on CD8 T cells during viral infection. Blood 96:1021–1029, 2000Google Scholar
  42. 42.
    Jason J, Inge KL: Modulation of CD8 and CD3 by HIV or HIV antigens. Scand J Immunol 53:259–267, 2001Google Scholar
  43. 43.
    Wack A, Soldaini E, Tseng CK, Nuti S, Klimpel GR, Abrignani S: Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co-stimulatory signal for human T cells. Eur J Immunol 31:166–175, 2001Google Scholar
  44. 44.
    Cormier EG, Tsamis F, Kajumo F, Durso RJ, Gardner JP, Dragic T: CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci USA 101:7270–7274, 2004Google Scholar
  45. 45.
    Pileri P Uematsu Y Campagnoli S Galli G Falugi F Petracca R, et al.: Binding of hepatitis C virus to CD81. Science 282:938–941, 1998Google Scholar
  46. 46.
    Piazzolla G, Tortorella C, Schiraldi S, Antonaci S: Relationship between interferon-γ, interleukin-10, and interleukin-12 production in chronic hepatitis C and in vitro effects of interferon-α. J Clin Immunol 20:54–61, 2000Google Scholar
  47. 47.
    Piazzolla G, Tortorella C, Fiore G, Fanelli M, Pisconti A, Antonaci S: Interleukin-12 p40/p70 ratio and in vivo responsiveness to IFN-α treatment in chronic hepatitis C. J Interferon Cytokine Res 21:453–461, 2001Google Scholar
  48. 48.
    Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, et al.: Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458, 2001PubMedGoogle Scholar
  49. 49.
    Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, et al.: Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96–peptide complexes: Clinical and immunologic findings. J Clin Oncol 20:4169–4180, 2002CrossRefPubMedGoogle Scholar
  50. 50.
    Scheibenbogen C, Nagorsen D, Seliger B, Schmittel A, Letsch A, Bauer S, et al.: Long-term freedom from recurrence in 2 stage IV melanoma patients following vaccination with tyrosinase peptides. Int J Cancer 99:403–408, 2002Google Scholar
  51. 51.
    Rehermann B, Chang K-M, McHutchinson JC, Kokka R, Houghton M, Chisari FV: Quantitative analysis of the peripheral blood cytotoxic T lymphocyte response in patients with chronic hepatitis C virus infection. J Clin Invest 98:1432–1440, 1996Google Scholar
  52. 52.
    Waldrop SL, Pitcher CJ, Peterson DM, Maino VC, Picker LJ: Determination of antigen-specific memory-effector CD4+ T cell frequencies by flow cytometry. J Clin Invest 99:1739–1750, 1997Google Scholar
  53. 53.
    Suni MA, Picker LJ, Maino C: Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. J Immunol Methods 212:89–98, 1998Google Scholar
  54. 54.
    Somani J, Lonial S, Rosenthal H, Resnick S, Kakhniashvili I, Waller EK: A randomized, placebo-controlled trial of subcutaneous administration of GM-CSF as a vaccine adjuvant: Effect on cellular and humoral immune responses. Vaccine 21:221–230, 2002Google Scholar
  55. 55.
    Frasca L, Scottà C, Del Porto P, Nicosia A, Pasquazzi C, Versace I, et al.: Antibody-selected mimics of hepatitis C virus hypervariable region 1 activate both primary and memory Th lymphocytes. Hepatology 38:653–663, 2003Google Scholar
  56. 56.
    Harris N, Duller RM, Karupiah G: Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J Virol 69:910–915, 1995Google Scholar
  57. 57.
    Matsui M, Moriya O, Abdel-Aziz N, Matsuura Y, Miyamura T, Akatsuka T: Induction of hepatitis C virus-specific cytotoxic T lymphocytes in mice by immunization with dendritic cells transduced with replication-defective recombinant adenovirus. Vaccine 21:211–220, 2002Google Scholar
  58. 58.
    Thimme RD, Oldach D, Chang KM, Steiger C, Ray SC, Chisari SV: Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med 19:1395–1406, 2001Google Scholar
  59. 59.
    Gruener NH, Lechner F, Jung MC, Diepolder, H, Gerlach T, Lauer G, et al.: Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J Virol 75:2088–2097, 2001Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • G. Piazzolla
    • 1
    • 4
  • M. Nuzzaci
    • 2
  • C. Tortorella
    • 1
  • E. Panella
    • 1
  • A. Natilla
    • 2
  • D. Boscia
    • 3
  • A. De Stradis
    • 3
  • P. Piazzolla
    • 2
  • S. Antonaci
    • 1
  1. 1.Department of Internal Medicine, Immunology and Infectious Diseases, Section of Internal MedicineUniversity of Bari, PoliclinicoItaly
  2. 2.Department of Biology, Plant Protection and AgrobiotechnologyUniversity of BasilicataItaly
  3. 3.Institute of Plant Virology, CNR, Section of BariItaly
  4. 4.Department of Internal Medicine, Immunology and Infectious Diseases, Section of Internal MedicineUniversity of Bari, PoliclinicoItaly

Personalised recommendations