Journal of Atmospheric Chemistry

, Volume 75, Issue 1, pp 97–121 | Cite as

Chemical characteristics of atmospheric bulk deposition in a semi-rural area of the Po Valley (Italy)

  • Laura Tositti
  • Linda Pieri
  • Erika Brattich
  • Silvia Parmeggiani
  • Francesca Ventura
Article
  • 245 Downloads

Abstract

This study provides an analysis of a five-year time series chemical composition of the bulk deposition (2009–2013), collected within a farm surrounded by industrial and urban settlements in a semi-rural area of the Po Valley, with the aim of characterizing potential emission sources affecting precipitation composition at the site. Most monitoring efforts in this region, recognized as one of the most polluted in the world both due to the intense industrialisation and urbanisation as well as to frequent air stagnation conditions, are presently devoted more to gaseous and particulate pollutants than to precipitation chemistry. The bulk deposition samples were very concentrated in chemical species, both acidic and alkaline, high compared to other polluted sites in the world and to locations in the same district. The mean ions concentrations (in μeq l−1) are: NO3 (243) > SO4 2− (220) > PO4 3− (176) > Cl (153) > NO2 (29) > F (2.6); NH4 + (504) > Ca2+ (489) > K+ (151) > Na+ (127) > Mg2+ (127). pH data shows a trend toward slightly alkaline conditions attributed to the large presence of ammonium and crustal elements, in spite of high concentrations of nitrates and sulphates. The relevant concentrations of Ca2+ and Mg2+ further suggests that these alkaline conditions might be due to the correspondingly significant concentrations of carbonates/bicarbonates in our dataset. While back-trajectories analysis suggests the stronger importance of local resuspension over long-range transport, statistical analyses on ion composition highlight the key role exerted by agricultural activity, especially in the case of NH4 +, K+, Ca2+ and PO4 3− (especially linked to fertilisation practices and soil resuspension due to mechanical operations). Apart from Na+ and Cl ions which correlate well as expected, indicating their likely common origin from marine salt, the identification of the origin of the other ions is very complex due to the contribution of diverse local sources, such as industrial and residential settlements.

Keywords

Bulk deposition Chemical elements pH Back-trajectory analysis Multivariate analysis 

Notes

Acknowledgements

This study was mostly conducted on a voluntary basis. We wish to thank Fondazione CARISBO for the financial support enabling us to acquire the Ion Chromatograph used in this investigation. We acknowledge NOAA (http://www.esrl.noaa.gov/) for providing the HYSPLIT trajectory model (available at http://ready.arl.noaa.gov/HYSPLIT.php) and the GDAS meteorological archive data used in this study. We thank the Barcelona Supercomputing Center for providing the data from the BSC-DREAM8b (Dust REgional Atmospheric Model) model. Two anonymous reviewers are gratefully acknowledged for their comments and suggestions which overall greatly improved the quality of our work.

Supplementary material

10874_2017_9365_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 11.8 kb)
10874_2017_9365_MOESM2_ESM.docx (431 kb)
ESM 2 (DOCX 430 kb)
10874_2017_9365_MOESM3_ESM.docx (137 kb)
ESM 3 (DOCX 137 kb)
10874_2017_9365_MOESM4_ESM.docx (671 kb)
ESM 4 (DOCX 671 kb)

References

  1. Al-Khashman, O.A., Jaradat, A.Q., Salameh, E.: Five-year monitoring study of chemical characteristics of wet atmospheric precipitation in the southern region of Jordan. Environ. Monit. Assess. 185, 5715–5727 (2013)CrossRefGoogle Scholar
  2. Al-Momani, I.F., Ataman, O.Y., Anwari, M.A., Tuncel, S., Köse, C., Tuncel, G.: Chemical composition of precipitation near an industrial area at Izmir. Turkey. Atmos Environ. 29, 1131–1143 (1995)CrossRefGoogle Scholar
  3. Anatolaki, C., Tsitouridou, R.: Relationship between acidity and ionic composition of wet precipitation: a two years study at an urban site, Thessaloniki. Greece. Atmos Res. 92(1), 100–113 (2009)CrossRefGoogle Scholar
  4. Arsene, C., Olariu, R.I., Mihalopoulos, N.: Chemical composition of rainwater in the northeastern Romania, Iasi region (2003-2006). Atmos. Environ. 41, 9452–9467 (2007)CrossRefGoogle Scholar
  5. Bagnouls, F., Gaussen, H.: Saison sêche et indice xérothermique. Doc. pour les Cartes des Prod. végét. Serie: Généralités. 1, 1–48 (1953)Google Scholar
  6. Bagnouls, F., Gaussen, H.: Les climats biologiques et leur classification. Annales de Géographie. 66, 193–220 (1957)CrossRefGoogle Scholar
  7. Balestrini, R., Arisci, S., Brizzio, M.C., Mosello, R., Rogora, M., Tagliaferri, A.: Dry deposition of particles and canopy exchange: comparison of wet, bulk and throughfall deposition at five forest sites in Italy. Atmos. Environ. 41(4), 745–756 (2007)CrossRefGoogle Scholar
  8. Barrow, E., Hulme, M.: Climates of the British Isles: Present, Past and Future. Routledge, London, pp. 500, ISBN 0415130166 (1997)Google Scholar
  9. Bertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., Chazot, G.: Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). J Atmos Chem. 60(3), 253–271 (2008)CrossRefGoogle Scholar
  10. Budhavant, K.B., Rao, P.S.P., Safai, P.D., Ali, K.: Influence of local sources on rainwater chemistry over Pune region. India. Atmos Res. 100, 121–131 (2011)Google Scholar
  11. Calvo, A.I., Pont, V., Olmo, F.J., Castro, A., Alados-Arboledas, L., Vicente, A.M., Fernández-Raga, M., Fraile, R.: Air masses and weather types: a useful tool for characterizing precipitation chemistry and wet deposition. Aer Air Qual Res. 12, 856–878 (2012)Google Scholar
  12. Celle-Jeanton, H., Travi, Y., Loÿle-Pilot, M.D., Hunewau, F., Bertrand, G.: Rainwater chemistry at a mediterranean inland station (Avignon, France): local contribution versus long-range supply. Atmos. Res. 91, 118–126 (2009)CrossRefGoogle Scholar
  13. Claquin, T., Schulz, M., Balkanski, Y.: Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res. 104, 22243–22256 (1999)CrossRefGoogle Scholar
  14. Conradie, E.H., Van Zyl, P.G., Pienaar, J.J., Beukes, J.P., Galy-Lacaux, C., Venter, A.D., Mikhatswa, G.V.: The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmos. Environ. 146, 113–131 (2016)CrossRefGoogle Scholar
  15. Creamean, J.M., Suski, K.J., Rosenfeld, D., Cazorla, A., DeMott, P.J., Sullivan, R.C., White, A.B., Ralph, F.M., Minnis, P., Comstock, J.M., Tomlinson, J.M., Prather, K.A.: Dust and biological aerosol from the Sahara and Asia influence precipitation in the western U.S. Science. 339, 1572–1578 (2013)CrossRefGoogle Scholar
  16. Demirak, A., Balci, A., Karaoğlu, H., Tosmur, B.: Chemical characteristics of rain water at an urban site of south western Turkey. Environ Mon Assess. 123(1–3), 271–283 (2006)CrossRefGoogle Scholar
  17. Draxler, R. R., Stunder, B., Rolph, G., Stein, A., Taylor, A.: HYSPLIT_4 User’s Guide, via NOAA ARL website. NOAA Air Resources Laboratory, Silver Spring, MD, December 1997, revised September 2014 Available at http://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf (2014)- Accessed 05/05/2015
  18. Đurašković, P., Tošić, I., Unkašević, M., Ignjatović, L., Đorđević, D.: The dominant contribution on wet deposition of water-soluble main ions in the south-eastern Adriatic region. Open Chem. 10(4), 1301–1309 (2012)Google Scholar
  19. EEA (European Environment Agency) Environment and human health. EEA Report No 5/2013, Report EUR 25933 EN, Joint EEA-JRC report, ISBN 978–92–9213-392-4, ISSN 1725–9177, 112 pagg. (2013) doi: 10.2800/9092
  20. EEA (European Environment Agency): Ammonia (NH3) emissions. Available at: http://www.eea.europa.eu/data-and-maps/indicators/eea-32-ammonia-nh3-emissions-1/assessment-4 last Accessed 15th December 2016 (2015)
  21. Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli, Filippi, N., Sbarbati, L.: I suoli dell’Emilia-Romagna. Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli (in Italian) (1994)Google Scholar
  22. Facchini, C.M.R., Pinto, F.M., Derossi, I.N., Esteves, W.T., Santos, M.D.R., Costa Matos, M.A., Lowinsohn, D., Camargo, R.: Chemical characteristics of rainwater at a southeastern site of Brazil Atmos Poll res 5(2), 253–261 (2014)Google Scholar
  23. Fenn, M.E., Baron, J.S., Allen, E.B., Rueth, H.M., Nydick, K.R., Geiser, L., Bowman, W.D., Sickman, J.O., Meixner, T., Johnson, D.W., Neitlich, P.: Ecological effects of nitrogen deposition in the western United States. Bioscience. 53, 404–420 (2003)CrossRefGoogle Scholar
  24. Finlayson-Pitts, B.J., Pitts, J.N. Jr.: Chemistry of the upper and lower atmosphere theory, experiments, and applications, Academic Press, San Diego (2000)Google Scholar
  25. Fraile, R., Calvo, A.I., Castro, A., Fernández-Gonzalez, D., García-Ortega, E.: The behaviour of the atmosphere in long-range transport. Agrobiologia. 22, 35–45 (2006)CrossRefGoogle Scholar
  26. Gilardoni, S., Massoli, P., Giulianelli, L., Rinaldi, M., Paglione, M., Pollini, F., Lanconelli, C., Poluzzi, V., Carbone, S., Hillamo, R., Russell, L.M., Facchini, M.C., Fuzzi, S.: Fog scavenging of organic and inorganic aerosol in the Po Valley. Atmos. Chem. Phys. 14, 6967–6981 (2014)CrossRefGoogle Scholar
  27. Hicks, B.B., Meyers, T.P., Fairall, C.W., Mohnen, V.A., Dolske, D.A.: Ratios of dry to wet deposition of sulfur as derived from preliminary field data. Glob. Biogeochem. Cycles. 3(2), 155–162 (1989)CrossRefGoogle Scholar
  28. Huang, X.-F., Li, X., He, L.-Y., Feng, N., Hu, M., Niu, Y.-W., Zeng, L.-W.: 5-year study of rainwater chemistry in a coastal mega-city in South China. Atmos. Res. 97(1–2), 185–193 (2010)CrossRefGoogle Scholar
  29. Israelevich, P.L., Levin, Z., Joseph, J.H., Ganor, E.: Desert aerosol transport in the Mediterranean region as inferred from the TOMS aerosol index. J Geophys Res (1984–2012), 107(D21), AAC-13 (2002)Google Scholar
  30. Izquierdo, R., Avila, A.: Comparison of collection methods to determine atmospheric deposition in a rural Mediterranean site (NE Spain). J. Atmos. Chem. 69, 351–368 (2012)CrossRefGoogle Scholar
  31. Kavouras, I.G., Etyemezian, V., DuBois, D.W., Xu, J., Pitchford, M.: Source reconciliation of atmospheric dust causing visibility impairment in Class I areas of the western United States. J Geophys Res: Atmospheres (1984–2012) 114(D2) (2009)Google Scholar
  32. Kawamura, K., Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27, 2227–2235 (1993)CrossRefGoogle Scholar
  33. Khoiyangbam, R.S.: Introduction to Environmental Sciences. The Energy and Resources Institute (TERI), 623 pp., ISBN 8179934551, (2005)Google Scholar
  34. Köppen, W.: Das Geographische System der Klimate. Handbuch der Klimatologie 1, Berlin, Borntraeger (1936)Google Scholar
  35. Kulshrestha, U.C., Kulshrestha, M.J., Sekar, R., Sastry, G.S.R., Vairamani, M.: Chemical characteristics of rainwater at an urban site of south-central India. Atmos. Environ. 37, 3019–3026 (2003)CrossRefGoogle Scholar
  36. Levin, Z., Brenguier, J.-L.: Effects of pollution and biomass aerosols on clouds and precipitation: observational studies. In: Levin, Z., Cotton, W.R.: Aerosol pollution impact on precipitation. A scientific review. Springer Science + Business Media, ISBN978–1–4020-8689-2, 386 pp (2009)Google Scholar
  37. Lu, X., Li, L.Y.T., Yang, G., Luo, D., Chen, J.: Chemical characterisation of spring rainwater of Xi’an city. NW China. Atmos Environ. 45, 5058–5063 (2011)CrossRefGoogle Scholar
  38. Mader, B.T., Yu, J.Z., Xu, J.H., Li, Q.F., Wu, W.S., Flagan, R.C., Seinfeld, J.H.: Molecular composition of the water-soluble fraction of atmospheric carbonaceous aerosols collected during ACE-Asia. J Geophys Res 109, D06206, 2004 doi: 10.1029/2003JD004105
  39. Matzneller, P., Ventura, F., Gaspari, N., Pisa, P.R.: Analysis of climatic trends data from the agrometeorological station of Bologna-Cadriano, Italy (1952–2007). Clim. Chang. 100(3–4), 717–731 (2010)CrossRefGoogle Scholar
  40. Migliavacca, D., Teixeria, E.C., Wiegand, F., Machado, A.C.M., Sanchez, J.: Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin. Brazil. Atmos Environ. 39, 1829–1844 (2005)CrossRefGoogle Scholar
  41. Morales-Baquero, R., Pulido-Villena, E., Reche, I.: Chemical signature of Saharan dust on dry and wet atmospheric deposition in the south-western Mediterranean region. Tellus B. 65, 1–11 (2013)CrossRefGoogle Scholar
  42. Pernigotti, D., Georiguevam -E., Thunis, P., Bessagnet, B.: Impact of metorologucal modeling on air quality: summer and winter episodes in the Po Valley (Northern Italy). Int J Environ Pollut 50, 1/2/3/4, 111–119 (2012)Google Scholar
  43. Pieri, L., Matzneller, P., Gaspari, N., Marotti, I., Dinelli, G., Rossi, P.: Bulk atmospheric deposition in the southern Po Valley (northern Italy). Water Air Soil Poll. 210(1), 155–169 (2010)CrossRefGoogle Scholar
  44. Pieri, L., Dinelli, G., Rossi, P.: Studio della qualità delle precipitazioni in due siti della provincia di Bologna: tendenza dell’ultimo decennio. Ita J Agrometeo. 3, 5–16 (2012)Google Scholar
  45. Putaud, J.-P., Raes, F., Dingenen, R.V., Bruggemann, E., Facchini, M.C., Decesari, S., Fuzzi, S., Gehrig, R., Huglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Muller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., Brink, H., TØrseth, K., Wiedensohler, A.: A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38, 2579–2595 (2004)CrossRefGoogle Scholar
  46. Rao, G., Momin, P., Safai, A., Khemani, L.: Rain water and through fall chemistry in the silent valley forest in the south India. Atmos. Environ. 29, 2025–2029 (1995)CrossRefGoogle Scholar
  47. Reche, C., Viana, M., Karanasiou, A., Cusack, M., Alastuey, A., Artiñano, B., Revuelta, M.A., López-Mahía, P., Blanco-Heras, G., Rodríguez, S., Sánchez dela Campa, A.M., Fernández-Camacho, R., González-Castanedo, Y., Mantilla, E., Tangh, Y.S., Querol, X.: Urban NH3 levels and sources in six major Spanish cities. Chemosphere. 119, 769–777 (2015)CrossRefGoogle Scholar
  48. Reiter, E.R.: Digest of selected weather problems of the Mediterranean. Navy Weather Research Facility - Technical Paper, N0. 9-71, Virginia, USA (1971)Google Scholar
  49. Riley, J.P., Chester, R.: Introduction to marine chemistry. Academic Press, New York (1971)Google Scholar
  50. Roy, A., Chatterjee, A., Tiwari, S., Sarkar, C., Das, S.K., Ghosh, S.K., Raha, S.: Precipitation chemistry over urban, rural and high altitude stations in eastern India. Atmos. Res. 181, 44–53 (2016)CrossRefGoogle Scholar
  51. Santos, P.S.M., Otero, M., Santos, E.B.H., Duarte, A.C.: Chemical composition of rainwater at a coastal town on the southwest of Europe: what changes in 20 years? Science Total Environ. 409, 3548–3553 (2011)CrossRefGoogle Scholar
  52. Schaap, M., van Loon, M., ten Brink, H.M., Dentener, F.J., Builtjes, P.J.H.: Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos. Chem. Phys. 4, 857–874 (2004)CrossRefGoogle Scholar
  53. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons, Hoboken, New Jersey (2012)Google Scholar
  54. Shen, Z., Wang, X., Zhang, R., Ho, K., Cao, J., Zhang, M.: Chemical composition of water soluble ions and carbonate estimation in spring aerosol at a semi-arid site of Tongyu. China. Aerosol Air Quality Res. 10, 360–368 (2011)Google Scholar
  55. Stohl, A.: Trajectory statistics – a new method to establish source-receptor relationship of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 30, 579–587 (1996)CrossRefGoogle Scholar
  56. Taylor S.R.: Abundance of chemical elements in the continental crust: a new table . Geochim. Cosmochim. Ac. 28(8), 1273–1285 (1964)Google Scholar
  57. Tositti, L., Brattich, E., Masiol, M., Baldacci, D., Ceccato, D., Parmeggiani, S., Stracquadanio, M., Zappoli, S.: Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy). Environ Science Poll Res. 21(2), 872–890 (2014)CrossRefGoogle Scholar
  58. Tuncer, B., Bayer, B., Yesilyurt, C., Tuncel, G.: Ionic composition of precipitation at the central Anatolia. Turkey. Atmos Environ. 35, 5989–6002 (2001)CrossRefGoogle Scholar
  59. Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J.B., Clerbaux, C., Flechard, C.R., Galy-Lacaux, C., Xu, W., Neuman, J.A., Tang, Y.S., Sutton, A.M., Erisman, J.W., Coheur, P.F.: Toward a validation of ammonia (NH3) measurements from the IASI satellite. Atmos Meas Tech. 8, 1575–1591 (2015)CrossRefGoogle Scholar
  60. Vecchi, R., Marcazzan, G., Valli, G., Cerini, M., Antoniazzi, C.: The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos. Environ. 38, 4437–4446 (2004). doi: 10.1016/j.atmosenv.2004.05.029 CrossRefGoogle Scholar
  61. Vet, R., Artz, R.S., Carou, S., Shaw, M., Ro, C.-H., Aas, W., Baker, A., Bowersox, V.C., Dentener, F., Galy-Lacaux, C.-G., Hou, A., Pienaar, J.J., Gillett, R., Forti, M.C., Gromov, S., Hara, H., Khodzer, T., Mahowald, N.M., Nickovic, S., Rao, P.S.P., Reid, N.W.: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014)CrossRefGoogle Scholar
  62. Vong, R.J., Larson, T.V., Covert, A.P., Waggoner, A.P.: Measurement and modelling of western Washington precipitation chemistry. Water Air Soil Poll. 26, 71–84 (1985)CrossRefGoogle Scholar
  63. Wilks, D.S.: Statistical methods in the atmospheric sciences. Elsevier International Geophysics Series ISBN 0127519661 627 pp. (2006)Google Scholar
  64. Wu, Q., Han, G., Tao, F., Tang, Y.: Chemical composition of rainwater in a karstic agricultural area. Southwest China: The impact of urbanization. Atmos Res. 111, 71–78 (2012)Google Scholar
  65. Zhang, M., Wang, S., Wu, F., Yuan, X., Zhang, Y.: Chemical composition of wet precipitation and anthropogenic influence at a developing urban site in southeastern China. Atmos. Res. 84, 311–322 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Chemistry «Giacomo Ciamician»University of BolognaBolognaItaly
  2. 2.Department of Agricultural SciencesUniversity of BolognaBolognaItaly

Personalised recommendations