Journal of Atmospheric Chemistry

, Volume 75, Issue 1, pp 85–96 | Cite as

Evaluation of an automated EA-IRMS method for total carbon analysis of atmospheric aerosol at HEKAL

  • István Major
  • Brigitta Gyökös
  • Marianna Túri
  • István Futó
  • Ágnes Filep
  • András Hoffer
  • Enikő Furu
  • A. J. Timothy Jull
  • Mihály Molnár


Comprehensive atmospheric studies have demonstrated that carbonaceous particles are one of the main components of atmospheric aerosols over Europe. The aim of our study was to establish an automated elemental analyser interfaced to a stable isotope mass spectrometer (EA-IRMS) method at the Hertelendi Laboratory of Environmental Studies (HEKAL), as a suitable method of quantification of total carbon mass in individual PM2.5 aerosol samples. Total carbon (TC) mass and simultaneous stable isotopic ratios were determined for both test standard and genuine aerosol samples. Finally, the results were compared to the ones obtained independently by an alternative sealed tube combustion method developed previously at HEKAL. The TC recovery tests of standard material prepared by the sealed tube method confirmed at least a carbon recovery yield of 92% for a broad range of carbon mass (100–2000 μg). The stable isotopic results confirmed that sealed tube method is reproducible and suitable to be used as a reference to verify our new EA-IRMS method. The EA-IRMS TC measurements of genuine aerosols gave on average 3% higher carbon recovery yield, relative to the uncorrected results of the sealed tube method. The comparison of the stable isotopic results by the two methods for aerosols also showed minimal differences. Consequently, the possibility of simultaneous TC and stable isotopic analyses makes the EA-IRMS method a very attractive alternative for continuous measurement of aerosols, with an accuracy and reliability similar to other commercial devices.


PM2.5 Total carbon Elemental analyser IRMS Stable isotopes 



This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 ‘National Excellence Program and the project of GINOP-2.3.2.-15-2016-00009 ‘ICER’.


  1. Cachier, H., Brémond, M.P., Buat-Ménard, P.: Determination of atmospheric soot carbon with a simple thermal method. Tellus. 41B(3), 379–390 (1989)CrossRefGoogle Scholar
  2. Chow, J.C., Watson, J.G.: PM2.5 carbonate concentrations at regionally representative Interagency Monitoring of Protected Visual Environment sites. Jour. of Geophys. Res. 107, 8344 (2002). doi: 10.1029/2001JD000574 CrossRefGoogle Scholar
  3. Filep, Á., Drinovec, L., Palágyi, A., Manczinger, L., Vágvölgyi, C., Bozóki, Z., Hitzenberger, R., Szabó, G.: Source specific Cyto- and genotoxicity of atmospheric aerosol samples. Aerosol and Air Quality Res. 15(6), 2325–2331 (2015)Google Scholar
  4. Finnigan ConFlo III Operating Manual. Thermo Electron Corporation. Published by Product Marketing, Thermo Electron Corporation, Bremen, Germany. 6.6 paragraph 6 (19)-6 (21) (2003).Google Scholar
  5. Gelencsér, A., Hoffer, A., Molnár, A., Kriváncsy, Z., Kiss, G., Mészáros, E.: Thermal behaviour of carbonaceous aerosol from a continental background site. Atmos. Environ. 34, 823–831 (2000)CrossRefGoogle Scholar
  6. Górka, M., Rybicki, M., Simoneit, B.R.T., Marynovski, L.: Determination of multiple organic matter sources in aerosol PM10 from Wroclaw, Poland using molecular and stable carbon isotope compositions. Atmos. Environ. 89, 739–748 (2014)CrossRefGoogle Scholar
  7. Green, D.C., Fuller, G.W., Baker, T.: Development and validation of the volatile correction model for PM10- an empirical method for adjusting TEOM measurements for their loss of volatile particulate matter. Atmos. Environ. 43, 2132–2141 (2009)CrossRefGoogle Scholar
  8. Hansen, A.D.A., Rosen, H., Novakov, T.: The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Tot. Environ. 36, 191–196 (1984)CrossRefGoogle Scholar
  9. Janovics, R.: Development of radiocarbon-based measuring methods and their application for nuclear environmental monitoring. PhD thesis. University of Debrecen Press in Hungarian (2015).
  10. Kawamura, K., Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27, 2227–2235 (1993)CrossRefGoogle Scholar
  11. Krivácsy, Z., Sávári, Z., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S.G.: Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmos. Environ. 35, 6231–6244 (2001)CrossRefGoogle Scholar
  12. Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak Jr., F., Puybonnieux-Texier, V., Quénel, P., Schneider, J., Seethaler, R., Vergnaud, J.C., Sommer, H.: Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet. 356, 795–801 (2000)CrossRefGoogle Scholar
  13. Lavanchy, V.M.H., Gäggeler, H.W., Nyeki, S., Baltensperger, U.: Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch, Atmos. Environment. 33(17), 2759–2769 (1999)Google Scholar
  14. Mader, B.T., Schauer, J.J., Seinfeld, J.H., Flagan, R.C., Yu, J.Z., Yang, H., Lim, H.J., Turpin, B.J., Deminter, J.T., Heidemann, G., Bae, M.S., Quinn, P., Bates, T., Eatough, D.J., Huebert, B.J., Bertram, T., Howell, S.: Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia, Atmos. Environment. 37(11), 1435–1449 (2003)Google Scholar
  15. Major, I., Furu, E., Haszpra, L., Kertész, Z., Molnár, M.: One-year-long continuous and synchronous data set of fossil carbon in atmospheric PM2.5 and carbon-dioxide in Debrecen, Hungary. Radiocarbon. 57(5), 991–1002 (2015)CrossRefGoogle Scholar
  16. Mertes, S., Dippel, B., Schwarzenböck, A.: Quantification of graphitic carbon in atmospheric aerosol particles by Raman spectroscopy and first application for the determination of mass absorption efficiencies. J. Aerosol Sci. 35(3), 347–361 (2004)CrossRefGoogle Scholar
  17. Novakov, T., Hegg, D.A., Hobbs, P.V.: Airborne measurements of carbonaceous aerosols on the East Coast of the United States. J. Geophys. Res.-Atmos. 102, 30023–30030 (1997)CrossRefGoogle Scholar
  18. Polgári, M., Németh, T., Pál-Molnár, E., Futó, I., Vigh, T., Mojzsis, S.J.: Correlated chemostratigraphy of Mn-carbonate microbialites (Úrkút, Hungary). Gondwana Res. 29, 278–289 (2016)CrossRefGoogle Scholar
  19. Putaud, J.P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousam, A., Kuhlbusch, T.A.J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., Raes, F.: A European aerosol phenomenology 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 44, 1308–1320 (2010)CrossRefGoogle Scholar
  20. Ramanathan, V., Ramana, M.V., Roberts, G., Kim, D., Corrigan, C., Chung, C., Winker, D.: Warming trends in Asia amplified by brown cloud solar absorption. Nature. 448, 575–578 (2007)CrossRefGoogle Scholar
  21. Schmid, H., Laskus, L., Abraham, H.J., Baltensperger, U., Lavanchy, V., Bizjak, M., Burba, P., Cachier, H., Crow, D., Chow, J., Gnauk, T., Even, A., ten Brink, H.M., Giesen, K.P., Hitzenberger, R., Hueglin, E., Maenhaut, W., Pio, C., Carvalho, A., Putaud, J.P., Toom-Sauntry, D., Puxbaum, H.: Results of the "carbon conference" international aerosol carbon round robin test stage I, Atmos. Environment. 35(12), 2111–2121 (2001)Google Scholar
  22. Szidat, S., Ruff, M., Perron, N., Wacker, L., Synal, H.A., Hallquist, M., Shannigrahi, A.S., Yttri, K.E., Dye, C., Simpson, D.: Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg. Sweden. Atmos. Chem. and Phys. 9, 1521–1535 (2009)Google Scholar
  23. Tørseth, K., Aas, W., Breivik, K., Fjæraa, A.M., Fiebig, M., Hjellbrekke, A.G., Lund Myhre, C., Solberg, S., Yttri, K.E.: Introduction to the European monitoring and evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. Discuss. 12, 5447–5481 (2012)CrossRefGoogle Scholar
  24. Utry, N., Ajtai, T., Pintér, M., Tombácz, M., Illés, E., Bozóki, Z., Szabó, G.: Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer. Atmos. Measur. Tech. Dis. 7, 9025–9046 (2014)CrossRefGoogle Scholar
  25. Vető, I., Futó, I., Horváth, I., Szántó, Z.: Late and deep fermentative methanogenesis as reflected in the H-C-O-S isotopy of the methane-water system in deep aquifers of the Pannonian Basin (SE Hungary). Org. Geochem. 35, 713–723 (2004)CrossRefGoogle Scholar
  26. Vodila, G., Placsu, L., Futó, I., Szántó, Z.: A 9-year record of stable isotope ratios of precipitation in eastern Hungary: implications on isotope hydrology and regional palaeoclimatology. Journ. Hydro. 400, 144–153 (2011)CrossRefGoogle Scholar
  27. Kertész, Z., Szoboszlai, Z., Angyal, A., Dobos, E., Borbély, K.I.: Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment. Nucl. Inst. And Meth. B. 268, 1924–1928 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • István Major
    • 1
  • Brigitta Gyökös
    • 2
  • Marianna Túri
    • 1
  • István Futó
    • 1
  • Ágnes Filep
    • 3
  • András Hoffer
    • 4
  • Enikő Furu
    • 5
  • A. J. Timothy Jull
    • 1
    • 6
  • Mihály Molnár
    • 1
  1. 1.Hertelendi Laboratory of Environmental Studies, Isotope Climatology and Environmental Research CentreInstitute of Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary
  2. 2.Faculty of EngineeringUniversity of DebrecenDebrecenHungary
  3. 3.MTA-SZTE Research Group on Photoacoustic SpectroscopySzegedHungary
  4. 4.Air Chemistry Group of the Hungarian Academy of SciencesVeszprémHungary
  5. 5.Laboratory of Ion Beam ApplicationsInstitute of Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary
  6. 6.Department of GeosciencesUniversity of ArizonaTucsonUSA

Personalised recommendations