Journal of Atmospheric Chemistry

, Volume 75, Issue 1, pp 17–32 | Cite as

Exchange fluxes of VOSCs between rice paddy fields and the atmosphere in the oasis of arid area in Xinjiang, China

  • Wei Wen Jing
  • Ning Li
  • Xiao Fang Li
  • De Qiang Li
  • Li Ling Wang
Article
  • 162 Downloads

Abstract

Investigations about VOSCs (volatile organic sulfur compounds) have been received increasing attention for their significant contribution to the nonvolcanic background sulfate layer in the stratosphere and the earth’s radiation balance and as a potential tool to understand the carbon budget. In this study, COS and CS2 were always recorded throughout the entire rice cultivation season of 2014. COS fluxes appeared as emission in non-planted soil and as uptake in planted soil, the corresponding results were obtained as 2.66 and −2.35 pmol·m−2·s−1, respectively. For CS2, both planted and non-planted paddy fields acted as sources with an emission rate of 1.02 pmol·m−2·s−1 and 2.40 pmol·m−2·s−1, respectively. COS emission or uptake rates showed a distinct seasonal variation, with the highest fluxes at the jointing-booting stage. COS and CS2 fluxes increased with increasing N fertilizer use because of improved plant and microbial growth and activity. Plots treated with both N and S reduced COS and CS2 fluxes slightly compared with plots with only-N treatment. Light, soil moisture or temperature showed no significant correlation with COS and CS2 fluxes, but revealed the important impacts on the magnitude and direction of gases fluxes. The results also showed that the (available) sulfur contents in soil and roots had a certain effect on VOSCs emission or uptake. Our results highlight the significance of biotic and abiotic production and consumption processes existing in the soil.

Keywords

Volatile organic sulfur compounds (VOSCs) Rice paddy field Arid area oasis Flux 

Notes

Acknowledgements

This research was supported by The National Natural Science Foundation of China (No. 41263004).

References

  1. Aneja, V.P.: Natural sulfur emissions into the atmosphere. J. Air Waste Manage. Assoc. 40, 469–476 (1990)CrossRefGoogle Scholar
  2. Ayotade, K.A.: Kinetics and reactions of hydrogen sulfide in solution of flooded rice soils. Plant Soil 46, 381–385 (1977)CrossRefGoogle Scholar
  3. Berry, J., Wolf, A., Campbell, J.E., Baker, I., Blake, N.: A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J. Geophys. Res. Biogeosci.118, 842–852 (2013)CrossRefGoogle Scholar
  4. Billesbach, D.P., Berry, J.A., Seibt, U., Maseyk, K., Torn, M.S., Fischer, M.L., Abu-Naser, M., Campbell, J.E.: Growing season eddy covariance measurements of carbonyl sulfide and CO2 fluxes: COS and CO2 relationships in southern Great Plains winter wheat. Agric. For. Meteorol. 184, 48–55 (2014)CrossRefGoogle Scholar
  5. Bloem, E., Haneklaus, S., Kesselmeier, J., Schnug, E.: Sulfur fertilization and fungal infections affect the exchange of H2S and COS from agricultural crops. J. Agri. Food Chemi. 60, 7588–7596 (2012)CrossRefGoogle Scholar
  6. Campbell, J.E., Carmichael, G.R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D.R., Blake, N.J., Vay, S.A., Collatz, G.J., Baker, I., Berry, J.A., Montzka, S.A., Sweeney, C., Schnoor, J.L., Stanier, C.O.: Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322, 1085–1088 (2008)CrossRefGoogle Scholar
  7. Campbell, J.E., Whelan, M.E., Seibt, U., Smith, S.J., Berry, J.A., Hilton, T.W.: Atmospheric carbonyl sulfide sources from anthropogenic activity: implications for carbon cycle constraints. Geophys. Res. Lett. 42, 3004–3010 (2015)CrossRefGoogle Scholar
  8. Charlson, R.J., Rodhe, H.: Factors controlling the acidity of natural rainwater. Nature 295, 683–685 (1982)CrossRefGoogle Scholar
  9. Charlson, R.J., Lovelock, J.E., Andreae, M.O., Warren, S.G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–662 (1987)CrossRefGoogle Scholar
  10. Commane R., Meredith L.K., Baker I.T, Berry J.A., Munger J.W., Montzka S.A, Templer P.H., Juice S.M., Zahniser M.S., Wofsy S.C.: Seasonal fluxes of carbonyl sulfide in a midlatitude forest. PNAS 112, 14162–14167 (2015)Google Scholar
  11. Cui, P., Yao, H., Qi, L.W.: The monitoring of methane concentration in the rice paddy in Beijing. Environ. Sci. 17, 26–28 (1996) (in Chinese, with English abstract)Google Scholar
  12. de Mello, W.Z., Hines, M.E.: Application of static and dynamic enclosures for determining dimethyl sulfide and carbonyl sulfide exchange in Sphagnum Peatlands: implications for the magnitude and direction of flux. J. Geophys. Res. 99, 14601–14607 (1994)CrossRefGoogle Scholar
  13. Delaune, R.D., Devai, I., Lindau, C.W.: Flux of reduced sulfur gases along a salinity gradient in Louisiana coastal marshes. Estuar. Coast. Shelf Sci. 54, 1003–1011 (2002)CrossRefGoogle Scholar
  14. Devai, I., Delaune, R.D.: Formation of volatile sulfur compounds in salt marsh sediment as influenced by soil redox condition. Org. Geochem. 23, 283–287 (1995)CrossRefGoogle Scholar
  15. FAO Quarterly Bulletin and Station. (Vol. 3, pp. 47). http://faostat.fao.org (1990)
  16. Geng, C.M., Mu, Y.J.: Carbonyl sulfide and dimethyl sulfide exchange between lawn and the atmosphere. J. Geophys. Res. 109, 221–236 (2004)CrossRefGoogle Scholar
  17. Guo, H., Simpson, I.J., Ding, A.J., Wang, T., Saunders, S.M., Wang, T.J., Cheng, H.R., Barletta, B., Meinardi, S., Blake, D.R., Rowland, F.S.: Carbonyl sulfide, dimethyl sulfide and carbon disulfide in the Pearl River Delta of southern China: impact of anthropogenic and biogenic sources. Atmos. Environ. 44, 3805–3813 (2010)CrossRefGoogle Scholar
  18. Hines, M.E., Pelletier, R.E., Crill, P.M.: Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: rates and extrapolation using remote sensing. J. Geophys. Res. 98, 8991–8999 (1993)CrossRefGoogle Scholar
  19. Kanda, K.I., Tsuruta, H., Minani, K.: Emission of dimethyl sulfide, carbonyl sulfide and carbon disulfide from paddy fields. Soil Sci. Plant Nutri. 38, 709–716 (1992)CrossRefGoogle Scholar
  20. Kelly, D.P., Wood, A.P., Jordan, S.L., Padden, A.N., Gorlenko, V.M., Dubinina, G.A.: Biological production and consumption of gaseous organic sulfur-compounds. Biochem. Soc. Trans. 22, 1011–1015 (1994)CrossRefGoogle Scholar
  21. Kitz, F., Gerdel, K., Hammerle, A., Laterza, T., Spielmann, F.M., Wohlfahrt, G.: In situ soil COS exchange of a temperate mountain grassland under simulated drought. Oecologia 183: 851–860 (2017)Google Scholar
  22. Kuhn, U., Ammann, C., Wolf, A., Meixner, F.X., Andreae, M.O., Kesselmeier, J.: Carbonyl sulfide exchange on an ecosystem scale: soil represents a dominant sink for atmospheric COS. Atmos. Environ. 33, 995–1008 (1999)CrossRefGoogle Scholar
  23. Lai, X.Q.: The oasis agriculture in China, pp. 3–57. China Agriculture Press, Beijing (2005)Google Scholar
  24. Li, X.H., Liu, J.S., Yang, J.S.: Variation of H2S and COS emission fluxes from Calamagrostis Angustifolia wetlands in Sanjiang plain, Northeast China. Atmos. Environ. 40, 6303–6312 (2006)CrossRefGoogle Scholar
  25. Liu, J.F., Mu, Y.J., Geng, C.M., Yu, Y.B., He, H., Zhang, Y.H.: Uptake and conversion of carbonyl sulfide in a lawn soil. Atmos. Environ. 41, 5697–5706 (2007)CrossRefGoogle Scholar
  26. Liu, J.F., Geng, C.M., Mu, Y.J., Zhang, Y.H., Xu, Z., Wu, H.: Exchange of carbonyl sulfide (COS) between the atmosphere and various soils in China. Biogeochemi. 7, 753–762 (2010)Google Scholar
  27. Manna, M.C., Swarup, A., Wanjari, R.H., Ravankar, H.N.: Long-term effects of NPK fertiliser and manure on soil fertility and a sorghum-wheat farming system. Aus. J. Exp. Agric. 47, 700–711 (2007)CrossRefGoogle Scholar
  28. Maseyk, K., Berry, J.A., Billesbach, D., Campbell, J.E., Torn, M.S., Zahniser, M., Seibt, U.: Sources and sinks of carbonyl sulfide in an agricultural field in the southern Great Plains. PNAS 111, 9064–9069 (2014)CrossRefGoogle Scholar
  29. Matthias, A.D., Yarger, D.N., Weinbeck, R.S.: A numerical evaluation of chamber methods for determining gas fluxes. Geophys. Res. Lett. 5, 765–768 (1978)CrossRefGoogle Scholar
  30. Melillo, J.M., Steudler, P.A.: The effect of nitrogen fertilization on the COS and CS2 emission from temperature forest soils. J. Atmos. Chem. 9, 411–417 (1989)CrossRefGoogle Scholar
  31. Protoschill-Kress, G., Wilhelm, C., Kesselmeler, J.: Consumption of carbonyl sulphide (COS) by higher plant carbonic anhydrase (CA). Atmos. Environ. 30, 3151–3156 (1996)CrossRefGoogle Scholar
  32. Rennenberg, H., Polle, A.: Metabolic consequences of atmospheric sulphur in flux into plants. In: Alscher, R.G. (ed.) Plant responses to the gaseous environment, pp. 165–180. Academic Press, San Diego (1994)Google Scholar
  33. Sabit, M., Wang, W.J.: Spatial-temporal variation and protection of wetland resources in Xinjiang. Water Res. Pro. 23, 84–87 (2007) (in Chinese, with English abstract)Google Scholar
  34. Sansum, L.L., Robinson, J.B.D.: Wet digestion, manual and automated analysis of total sulphur in plant material. Commun. Soil. Sci. Plant Anal. 5, 365–383 (1974)CrossRefGoogle Scholar
  35. Schäfer, H., Myronova, N., Boden, R.: Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 61(2), 315–334 (2010)CrossRefGoogle Scholar
  36. Simmons, J.S., Klemedtsson, L., Hultberg, H., Hines, M.E.: Consumption of atmospheric carbonyl sulfide by coniferous boreal forest soils. J. Geophys. Res. 104, 11569–11576 (1999)CrossRefGoogle Scholar
  37. Staubes, R., Georgh, H.W., Ockelmann, G.: Flux of COS, DMS and CS2 from various soils in Germany. Tellus 41B, 305–313 (1989)CrossRefGoogle Scholar
  38. Steinbacher, M., Bingemer, H.G., Schmidt, U.: Measurements of the exchange of carbonyl sulfide (COS) and carbon disulfide (CS2) between soil and atmosphere in a spruce forest in central Germany. Atmos. Environ. 38, 6043–6052 (2004)CrossRefGoogle Scholar
  39. Stimler, K., Montzka, S.A., Berry, J.A., Rudich, Y., Yakir, D.: Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. New Phytol. 186(4), 869–878 (2010)CrossRefGoogle Scholar
  40. Watts, S.F.: The mass budgets of carbonyl sulfie, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ. 34, 761–779 (2000)CrossRefGoogle Scholar
  41. Wehr, R., Commane, R., Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S., Saleska, S. R., Wofsy, S. C.: Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences. 14 389–401 (2017). doi: 10.5194/bg-14-389-2017
  42. Whelan, M.E., Rhew, R.C.: Carbonyl sulfide produced by abiotic thermal and photodegradation of soil organic matter from wheat field substrate. J. Geophys. Res. 120, 54–62 (2015b)CrossRefGoogle Scholar
  43. Whelan, M.E., Rhew, R.C.: Reduced sulfur trace gas exchange between a seasonally dry grassland and the atmosphere. Biogeochemi. 128(3), 267–280 (2016)Google Scholar
  44. Whelan, M.E., Dong-Ha, M., Rhew, R.C.: Salt marsh vegetation as a carbonyl sulfide (COS) source to the atmosphere. Atmos. Environ. 73, 131–137 (2013)CrossRefGoogle Scholar
  45. Whelan, M.E., Hilton, T.W., Berry, J.A., Berkelhammer, M., Desai, A.R., Campbell, J.E.: Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake. Atmos. Chem. Phys. Discuss. 15, 21095–21132 (2015a)CrossRefGoogle Scholar
  46. Xu, D.Q., Shen, Y.G.: Diurnal variations in the photosynthetic efficiency in plants. Acta Phys. Sin. 23, 410–416 (1997)Google Scholar
  47. Xu, X., Bingemer, H.G., Schmidt, U.: The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest. Atmos. Chem. Phys. 2, 171–181 (2002)CrossRefGoogle Scholar
  48. Yagi, K., Tsuruta, H., Kanda, K., Minami, K.: Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Glob. Biogeochem. Cycles 10, 255–267 (1996)CrossRefGoogle Scholar
  49. Yi, Z.G., Wang, X.M.: Carbonyl sulfide and dimethyl sulfide fluxes in an urban lawn and adjacent bare soil in Guangzhou. Chin. J. Environ. Sci. 23, 784–789 (2011)CrossRefGoogle Scholar
  50. Yi, Z.G., Wang, X.M., Sheng, G.: Exchange of carbonyl sulfide (OCS) and dimethyl sulfide (DMS) between rice paddy fields and the atmosphere in subtropical China. Agric. Ecosyst. Environ. 123, 116–124 (2008)CrossRefGoogle Scholar
  51. Yi, Z.G., Zheng, L.L., Wu, T., Wang, X.M.: Contribution of aboveground plants, the rhizosphere and root-free-soils to total COS and DMS fluxes at three key growth stages in rice paddies. Agric. Ecosyst. Environ. 179, 11–17 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Wei Wen Jing
    • 1
  • Ning Li
    • 2
  • Xiao Fang Li
    • 1
  • De Qiang Li
    • 1
  • Li Ling Wang
    • 1
  1. 1.Applied Chemistry Laboratory, College of Chemical EngineeringXinjiang Agricultural University, Xinjiang Uygur Autonomous RegionUrumqiPeople’s Republic of China
  2. 2.College of Pratacultural & Environmental SciencesXinjiang Agricultural University, Xinjiang Uygur Autonomous RegionUrumqiPeople’s Republic of China

Personalised recommendations