Journal of Atmospheric Chemistry

, Volume 71, Issue 1, pp 55–64 | Cite as

OH in the tropical upper troposphere and its relationships to solar radiation and reactive nitrogen

  • R. S. Gao
  • K. H. Rosenlof
  • D. W. Fahey
  • P. O. Wennberg
  • E. J. Hintsa
  • T. F. Hanisco


In situ measurements of [OH], [HO2] (square brackets denote species concentrations), and other chemical species were made in the tropical upper troposphere (TUT). [OH] showed a robust correlation with solar zenith angle. Beyond this dependence, however, [OH] did not correlate to its primary source, the product of [O3] and [H2O] ([O3]•[H2O]), or its sink [NOy]. This suggests that [OH] is heavily buffered in the TUT. One important exception to this result is found in regions with very low [O3], [NO], and [NOy]. Under these conditions, [OH] is highly suppressed, pointing to the critical role of NO in sustaining OH in the TUT and the possibility of low [OH] over the western Pacific warm pool due to strong marine convections bringing NO-poor air to the TUT. In contrast to [OH], [HOx] ([OH] + [HO2]) correlated reasonably well with [O3]•[H2O]/[NOy], suggesting that [O3]•[H2O] and [NOy] are the significant source and sink, respectively, of [HOx].


OH In situ Tropical upper troposphere STRAT 



This work was supported by the NOAA Atmospheric Composition and Climate Program and the NOAA Health of the Atmosphere Program, the NASA Radiation Sciences Program, and the NASA Upper Atmosphere Research Program. We would like to thank the NASA ER-2 program for making the mission possible. We thank M. Rex and L. L. Pan for insightful discussions.


  1. Brioude, J., Portmann, R.W., Daniel, J.S., Cooper, O.R., Frost, G.J., Rosenlof, K.H., Granier, C., Ravishankara, A.R., Montzka, S.A., Stohl, A.: Variations in ozone depletion potentials of very short-lived substances with season and emission region. Geophys. Res. Lett. 37, L19804 (2010). doi: 10.1029/2010GL044856 CrossRefGoogle Scholar
  2. Cecil, D.J., et al.: Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. (2012). doi: 10.1016/j.atmosres.2012.06.028 Google Scholar
  3. Christian, H.J., et al.: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. 108(D1), 4005 (2003). doi: 10.1029/2002JD002347 CrossRefGoogle Scholar
  4. Crawford, J., et al.: Implications of large scale shifts in tropospheric NOx levels in the remote tropical Pacific. J. Geophys. Res. 102(D23), 28,447–28,468 (1997)CrossRefGoogle Scholar
  5. Crawford, J., et al.: Assessment of upper tropospheric HOx sources over the tropical Pacific based on NASA GTE/PEM data: net effect on HOx and other photochemical parameters. J. Geophys. Res. 104(D13), 16255–16273 (1999). doi: 10.1029/1999JD900106 CrossRefGoogle Scholar
  6. Denning, R.F., Guidero, S.L., Parks, G.S., Gary, B.L.: Instrument description of the airborne microwave temperature profiler. J. Geophys. Res. 94, 16,757–16,765 (1989)CrossRefGoogle Scholar
  7. Fahey, D.W., et al.: In situ observations in aircraft exhaust plumes in the lower stratosphere at midlatitudes. J. Geophys. Res. 100, 3065–3074 (1995)CrossRefGoogle Scholar
  8. Fahey, D.W., et al.: In situ observations of NOy, O3, and the NOy/O3 ratio in the lower stratosphere. Geophys. Res. Lett. 23, 1653–1656 (1996)CrossRefGoogle Scholar
  9. Folkins, I., Bernath, P., Boone, C., Donner, L.J., Eldering, A., Lesins, G, Martin, R.V., Sinnhuber, B.-M., Walker, K.: Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3: implications for the water vapor budget. J. Geophys. Res. 111, D23304 (2006). doi: 10.1029/2006JD007325
  10. Gao, R.S., et al.: Partitioning of the reactive nitrogen reservoir in the lower stratosphere of the southern hemisphere: Observations and modeling. J. Geophys. Res. 102, 3935–3949 (1997)CrossRefGoogle Scholar
  11. Hanisco, T.F., et al.: The role of HOx in super- and subsonic aircraft exhaust plumes. Geophys. Res. Lett. 24, 65–68 (1997)CrossRefGoogle Scholar
  12. Hanisco, T.F., et al.: Sources, sinks, and the distribution of OH in the lower stratosphere. J. Phys. Chem. A 105, 1543–1553 (2001)CrossRefGoogle Scholar
  13. Jaeglé, L., Jacob, D.J., Brune, W.H., Wennberg, P.O.: Chemistry of HOx radicals in the upper troposphere. Atmos. Environ. 35, 469–489 (2001)CrossRefGoogle Scholar
  14. Kley, D., Crutzen, P.J., Smit, H.G.J., Vomel, H., Oltmans, S.J., Grassl, H., Ramanathan, V.: Observations of near-zero ozone concentrations over the convective pacific: effects on air chemistry. Science 274, 230–233 (1996)CrossRefGoogle Scholar
  15. McKeen, S.A., Gierczak, T., Burkholder, J.B., Wennberg, P.O., Hanisco, T.F., Keim, E.R., Gao, R.S., Liu, S.C., Ravishankara, A.R., Fahey, D.W.: The photochemistry of acetone in the upper troposphere: a source of odd-hydrogen radicals. Geophys. Res. Lett. 24, 3177–3180 (1997)Google Scholar
  16. Montzka, S.A., Krol, M., Dlugokencky, E., Hall, B., Jöckel, P., Lelieveld, J.: Small interannual variability of global atmospheric hydroxyl. Science 331, 67–69 (2011)CrossRefGoogle Scholar
  17. Newell, R.E., Gould-Stewart, S.: A stratospheric fountain? J. Atmos. Sci. 38, 2789–2796 (1981)CrossRefGoogle Scholar
  18. Proffitt, M.H., McLaughlin, R.J.: Fast-response dual-beam UV-absorption ozone photometer suitable for use on stratospheric balloons. Rev. Sci. Instrum. 54, 1719–1728 (1983)CrossRefGoogle Scholar
  19. Rae, J.G.L., Johnson, C.E., Bellouin, N., Boucher, O., Haywood, J.M., Jones, A.: Sensitivity of global sulphate aerosol production to changes in oxidant concentrations and climate. J. Geophys. Res. 112, D10312 (2007). doi: 10.1029/2006JD007826 CrossRefGoogle Scholar
  20. Rohrer, F., Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442, 184–187 (2006). doi: 10.1038/nature04924 CrossRefGoogle Scholar
  21. Schoeberl, M.R., Dessler, A.E., Wang, T.: Modeling upper tropospheric and lower stratospheric water vapor anomalies. Atmos. Chem. Phys. 13, 7783–7793 (2013). doi: 10.5194/acp-13-7783-2013 CrossRefGoogle Scholar
  22. Scott, S.G., Bui, T.P., Chan, K.R., Bowen, S.W.: The meteorological measurement system on the NASA ER-2 aircraft. J. Atmos. Ocean. Technol. 7, 525–540 (1990)CrossRefGoogle Scholar
  23. Skamarock, W.C., Dye, J.E., Defer, E., Barth, M.C., Stith, J.L., Ridley, B.A.: Observational- and modeling-based budget of lightning-produced NOx in a continental thunderstorm. J. Geophys. Res. 108, D10 (2003). doi: 10.1029/2002JD002163 Google Scholar
  24. Webster, C.R., May, R.D., Trimble, C.A., Chave, R.G., Kendall, J.: Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3. Appl. Opt. 33, 454–472 (1994)CrossRefGoogle Scholar
  25. Weinstock, E.M., et al.: New fast-response photofragment fluorescence hygrometer for use on the NASA ER-2 and the Perseus remotely piloted aircraft. Rev. Sci. Instrum. 65(11), 3544–3554 (1994)CrossRefGoogle Scholar
  26. Weisenstein, D.K., Yue, G.K., Ko, M.K.W., Sze, N.-D., Rodriguez, J.M., Scott, C.J.: A two-dimensional model of sulfur species and aerosol. J. Geophys. Res. 102(D11), 13019–13035 (1997)Google Scholar
  27. Wennberg, P.O., Cohen, R.C., Hazen, N.L., Lapson, L.B., Allen, N.T., Hanisco, T.F., Oliver, J.F., Lanham, N.W., Demusz, J.N., Anderson, J.G.: Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals. Rev. Sci. Instrum. 65, 1858–1876 (1994a). doi: 10.1063/1.1144835 CrossRefGoogle Scholar
  28. Wennberg, P.O., et al.: Removal of stratospheric O3 by radicals: in situ measurements of OH, HO2, NO, NO2, ClO, and BrO. Science 266, 398–404 (1994b)CrossRefGoogle Scholar
  29. Wennberg, P.O., et al.: Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere. Science 279, 49–53 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. S. Gao
    • 1
  • K. H. Rosenlof
    • 1
  • D. W. Fahey
    • 1
    • 2
  • P. O. Wennberg
    • 3
  • E. J. Hintsa
    • 2
    • 4
  • T. F. Hanisco
    • 5
  1. 1.Chemical Sciences Division, Earth System Research LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA
  2. 2.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  3. 3.Divisions of Geological and Planetary Sciences and Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Global Monitoring Division, Earth System Research LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA
  5. 5.Goddard Space Flight CenterNational Aeronautics and Space AdministrationGreenbeltUSA

Personalised recommendations