Journal of Atmospheric Chemistry

, Volume 70, Issue 4, pp 297–316 | Cite as

Measurements of stratospheric ozone at a mid-latitude observing station Valentia, Ireland (51.94° N, 10.25° W), using ground-based and ozonesonde observations from 1994 to 2009

  • Om P. TripathiEmail author
  • S. G. Jennings
  • C. D. O’Dowd
  • K. P. Lambkin
  • E. Moran


Sixteen years (1994 – 2009) of ozone profiling by ozonesondes at Valentia Meteorological and Geophysical Observatory, Ireland (51.94° N, 10.23° W) along with a co-located MkIV Brewer spectrophotometer for the period 1993–2009 are analyzed. Simple and multiple linear regression methods are used to infer the recent trend, if any, in stratospheric column ozone over the station. The decadal trend from 1994 to 2010 is also calculated from the monthly mean data of Brewer and column ozone data derived from satellite observations. Both of these show a 1.5 % increase per decade during this period with an uncertainty of about ±0.25 %. Monthly mean data for March show a much stronger trend of ~ 4.8 % increase per decade for both ozonesonde and Brewer data. The ozone profile is divided between three vertical slots of 0–15 km, 15–26 km, and 26 km to the top of the atmosphere and a 11-year running average is calculated. Ozone values for the month of March only are observed to increase at each level with a maximum change of +9.2 ± 3.2 % per decade (between years 1994 and 2009) being observed in the vertical region from 15 to 26 km. In the tropospheric region from 0 to 15 km, the trend is positive but with a poor statistical significance. However, for the top level of above 26 km the trend is significantly positive at about 4 % per decade. The March integrated ozonesonde column ozone during this period is found to increase at a rate of ~6.6 % per decade compared with the Brewer and satellite positive trends of ~5 % per decade.


Stratospheric Ozone Ozonesonde Brewer spectrophotometer Mid-latitude ozone trend 



The Environment Protection Agency (EPA) of Ireland is acknowledged for its support (EPA Project: Ozone levels, changes and trends over Ireland – an Integrated Analysis). The Australian Antarctic Division is kindly thanked for logistical support of the Antarctic firn sampling The authors wish to also thank anonymous reviewers for their valuable comments and suggestions.


  1. Angell, J.K., Free, M.: Ground-based observations of the slowdown in ozone decline and onset of ozone increase. J. Geophys. Res. 114, D07303 (2009). doi: 10.1029/2008JD010860 Google Scholar
  2. Austin, J., Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air. Geophys. Res. Lett. 33, L17807 (2006). doi: 10.1029/2006GL026867 CrossRefGoogle Scholar
  3. Basher, R.E.: Review of the Dobson spectrophotometer and its accuracy, WMO Ozone Report 13. World Meteorol. Org, Geneva (1982)Google Scholar
  4. Butchart, N., Cionni, I., Eyring, V., Shepherd, T.G., Waugh, D.W., Akiyoshi, H., Austin, J., Brühl, C., Chipperfield, M.P., Cordero, E., Dameris, M., Deckert, R., Dhomse, S., Frith, S.M., Garcia, R.R., Gettelman, A., Giorgetta, M.A., Kinnison, D.E., Li, F., Mancini, E., McLandress, C., Pawson, S., Pitari, G., Plummer, D.A., Rozanov, E., Sassi, F., Scinocca, J.F., Shibata, K., Steil, B., Tian, W.: Chemistry-climate model simulations of 21st century stratospheric climate and circulation changes. J. Climate 23, 5349–5374 (2010). doi: 10.1175/2010JCLI3404.1 CrossRefGoogle Scholar
  5. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–75 (1990)Google Scholar
  6. Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S., Moore, F., Hurst, D., Elkins, J., Schauffler, S., Andrews, A., Boering, K.: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci. 2, 28–31 (2009). doi: 10.1038/ngeo388 CrossRefGoogle Scholar
  7. Fioletov, V.E., Tarasick, D.W., Petropavlovskikh, I.: Estimating ozone variability and instrument uncertainties from SBUV(/2), ozonesonde, Umkehr, and SAGE II measurements: Short-term variations. J. Geophys. Res. 111, D02305 (2006). doi: 10.1029/2005JD006340 Google Scholar
  8. Fioletov, V.E., Labow, G., Evans, R., Hare, E.W., Koehler, U., McElroy, C.T., Miyagawa, K., Redondas, A., Savastiouk, V., Shalamyansky, A.M., Staehelin, J., Vanicek, K., Weber, M.: Performance of the ground-based total ozone network assessed using satellite data. J. Geophys. Res. 113, D14313 (2008). doi: 10.1029/2008JD009809 CrossRefGoogle Scholar
  9. Froidevaux, L., Livesey, N.J., Read, W.G., Salawitch, R.J., Waters, J.W., Drouin, B., MacKenzie, I.A., Pumphrey, H.C., Bernath, P., Boone, C., Nassar, R., Montzka, S., Elkins, J., Cunnold, D., Waugh, D.: Temporal decrease in upper atmospheric chlorine. Geophys. Res. Lett. 33, L23812 (2006). doi: 10.1029/2006GL027600 CrossRefGoogle Scholar
  10. Fusco, A.C., Salby, M.L.: Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Climate 12, 1619–1629 (1999)CrossRefGoogle Scholar
  11. Garcia, R.R., Randel, W.J.: Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci. 65, 2731–2739 (2008). doi: 10.1175/2008JAS2712.1 CrossRefGoogle Scholar
  12. Hadjinicolaou, P., Pyle, J.A., Harris, N.R.P.: The recent turnaround in stratospheric ozone over northern middle latitudes: a dynamical modeling perspective. Geophys. Res. Lett. 32, L12821 (2005). doi: 10.1029/2005GL022476 CrossRefGoogle Scholar
  13. Harris, N.R.P., Kyro, E., Staehelin, J., Brunner, D., Andersen, S.B., Godin-Beekmann, S., Dhomse, S., Hadjinicolaou, P., Hansen, G., Isaksen, I., Jrrar, A., Karpetchko, A., Kivi, R., Knudsen, B., Krizan, P., Lastovicka, J., Maeder, J., Orsolini, Y., Pyle, J.A., Rex, M., Vanicek, K., Weber, M., Wohltmann, I., Zanis, P., Zerefos, C.: Ozone trends at northern mid- and high latitudes – a European perspective. Ann. Geophys. 26, 1207–1220 (2008)CrossRefGoogle Scholar
  14. Jones, P.D., Jonsson, T., Wheeler, D.: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol. 17, 1433–1450 (1997)CrossRefGoogle Scholar
  15. Keim, C., Eremenko, M., Orphal, J., Dufour, G., Flaud, J.-M., Hopfner, M., Boynard, A., Clerbaux, C., Payan, S., Coheur, P.-F., Hurtmans, D., Claude, H., Dier, H., Johnson, B., Kelder, H., Kivi, R., Koide, T., Lopez Bartolome, M., Lambkin, K., Moore, D., Schmidlin, F.J., Stubi, R.: Tropospheric ozone from IASI: comparison of different inversion algorithms and validation with ozone sondes in the northern middle latitudes. Atmos. Chem. Phys. 9, 9329–9347 (2009)CrossRefGoogle Scholar
  16. Krzyscin, J.W.: Statistical reconstruction of daily total ozone over Europe 1950 to, 2004. J. Geophys. Res. 113, D07112 (2008). doi: 10.1029/2007JD008881 Google Scholar
  17. Krzyscin, J.W., Rajewska-Wiech, B.: Ozone recovery as seen in perspective of the Dobson spectrophotometer measurements at Belsk (52_N, 21_E) in the period 1963–2008. Atmos. Environ. 43, 6369–6375 (2009)CrossRefGoogle Scholar
  18. Leblanc, T., Tripathi, O.P., McDermid, I.S., Froidevaux, L., Livesey, N.J., Read, W.G., Waters, J.W.: Simultaneous lidar and EOS MLS measurements, and modeling, of a rare polar ozone filament event over Mauna Loa Observatory Hawaii. Geophys. Res. Lett. 33, L16801 (2006). doi: 10.1029/2006GL026257 CrossRefGoogle Scholar
  19. Logan, J.A., et al.: Trends in the vertical distribution of ozone: a comparaison of two analyses of ozonesonde data. J. Geophys. Res. 104, 26373–26399 (1999)CrossRefGoogle Scholar
  20. McPeters, R.D., Labow, G.J., Johnson, B.J.: A satellite-derived ozone climatology for balloonsonde estimation of total column ozone. J. Geophys. Res. 102(D7), 8875–8885 (1997)CrossRefGoogle Scholar
  21. Miller, A.J., Cai, A., Tiao, G., Wuebbles, D.J., Flynn, L.E., Yang, S., Weatherhead, E.C., Fioletov, V., Petropavlovskikh, I., Meng, X., Guillas, S., Nagatani, R.M., Reinsel, G.C.: Examinations of ozonesonde data for trends and trend changes incorporating solar and Arctic oscillation signals. J. Geophys. Res. 111, D13305 (2006). doi: 10.1029/2005JD006684 CrossRefGoogle Scholar
  22. Newchurch, M.J., Yang, E., Cunnold, D.M., Reinsel, G.C., Zawodny, J.M., Russell III, J.M.: Evidence for slowdown in stratospheric ozone loss: first stage of ozone recovery. J. Geophys. Res. 108, 4507 (2003). doi: 10.1029/2003JD003471 CrossRefGoogle Scholar
  23. Randel, W.J., Wu, F., Stolarski, R.S.: Changes in column ozone correlated with the stratospheric EP flux. J. Meteorol. Soc. Jpn. 80, 849–862 (2002)CrossRefGoogle Scholar
  24. Reinsel, G.C., Weatherhead, E., Tiao, G.C., Miller, A.J., Nagatani, R.M., Wuebbles, D.J., Flynn, L.E.: On detection of turnaround and recovery in trends for ozone. J. Geophys. Res. 107, 4078 (2002). doi: 10.1029/2001JD000500 CrossRefGoogle Scholar
  25. Reinsel, G.C., Miller, A.J., Weatherhead, E.C., Flynn, L.E., Nagatani, R.M., Tiao, G.C., Wuebbles, D.J.: Trend analysis of total ozone data for turnaround and dynamical contributions. J. Geophys. Res. 110, D16306 (2005). doi: 10.1029/2004JD004662 CrossRefGoogle Scholar
  26. Steinbrecht, W., Kőhler, U., Claude, H., Weber, M., Burrows, J.P., van der A, R.J.: Very high ozone columns at northern mid-latitudes in, 2010. Geophys. Res. Lett. 38, L06803 (2011). doi: 10.1029/2010GL046634 Google Scholar
  27. Tarasick, D.W., Fioletov, V.E., Wardle, D.I., Kerr, J.B., Davies, J.: Changes in the vertical distribution of ozone over Canada from ozonesonde: 1980–2001. J. Geophys. Res. 110, D02304 (2005). doi: 10.1029/2004JD004643 Google Scholar
  28. Tripathi, O.P., Leblanc, T., McDermid, I.S., Lefevre, F., Marchand, M., Hauchecorne, A.: Forecast, measurement, and modeling of an unprecedented polar ozone filament event over Mauna Loa observatory Hawaii. J. Geophys. Res. 111, D20308 (2006). doi: 10.1029/2006JD007177 CrossRefGoogle Scholar
  29. Tripathi, O.P., Godin-Beekmann, S., Lefevre, F., Pazmino, A., Hauchecorne, A., Chipperfield, M., Feng, W., Millard, G., Rex, M., Streibel, M., von der Gathen, P.: Comparison of polar ozone loss rates simulated by one-dimensional and three-dimensional models with match observations in recent antarctic and arctic winters. J. Geophys. Res. 112, D12307 (2007). doi: 10.1029/2006JD008370 CrossRefGoogle Scholar
  30. Wallace, L., Livingston, W.C.: Thirty-five year trend of hydrogen chloride amount above Kitt Peak, Arizona. Geophys. Res. Letts. 34, L16805 (2007). doi: 10.1029/2007GL030123 Google Scholar
  31. Waugh, D.: Atmospheric dynamics: the age of stratospheric air. Nat. Geosci. 2, 14–16 (2009). doi: 10.1038/ngeo397 CrossRefGoogle Scholar
  32. Weber, M., Dikty, S., Burrows, J.P., Garny, H., Dameris, M., Kubin, A., Abalichin, J., Langematz, U.: The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmos. Chem. Phys. 11, 11221–11235 (2011)CrossRefGoogle Scholar
  33. World Meteorological Organization.: Scientific Assessment of ozone depletion: 1998. 44 pp., Geneva, Switzerland (1999)Google Scholar
  34. World Meteorological Organization.: Scientific Assessment of ozone depletion: 2006. 233 pp., Geneva, Switzerland (2006)Google Scholar
  35. Yang, E.-S., Cunnold, D.M., Salawitch, R.J., McCormick, M.P., Russell III, J., Zawodny, J.M., Oltmans, S., Newchurch, M.J.: Attribution of recovery in lower stratospheric ozone. J. Geophys. Res. 111, D17309 (2006). doi: 10.1029/2005JD006371 CrossRefGoogle Scholar
  36. Zanis, P., Maillard, E., Staehelin, J., Zerefos, C., Kosmides, E., Tourpali, K., Wohltmann, I.: On the turnaround of stratospheric ozone trends deduced from the reevaluated Umkehr record of Arosa Switzerland. J. Geophys. Res. 111, D22307 (2006). doi: 10.1029/2005JD006886 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Om P. Tripathi
    • 1
    Email author
  • S. G. Jennings
    • 2
  • C. D. O’Dowd
    • 2
  • K. P. Lambkin
    • 3
  • E. Moran
    • 4
  1. 1.Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.School of Physics & Centre for Climate and Air Pollution Studies, Ryan InstituteNational University of Ireland GalwayGalwayIreland
  3. 3.Met Éireann (The Irish Meteorological Service), Valentia Meteorological and Geophysical ObservatoryCaherciveenIreland
  4. 4.Met Éireann (The Irish Meteorological Service)DublinIreland

Personalised recommendations