Journal of Atmospheric Chemistry

, Volume 70, Issue 4, pp 341–355 | Cite as

Experimental study of the heterogeneous reactivity between atomic chlorine and palmitic acid films

  • Raluca Ciuraru
  • Michael Ward
  • Maxence Mendez
  • Sylvie Gosselin
  • Nicolas Visez
  • Denis Petitprez


The present study focuses on the heterogeneous reaction between gaseous atomic chlorine and solid palmitic acid films, used as a proxy of the fatty acids detected in atmospheric airborne particles. This reaction is investigated in a coated wall flow tube reactor coupled to a molecular beam mass spectrometer. The reactive surfaces were prepared by coating the inner surface of the reactor. The initial Cl˙ and Cl2 uptake coefficient measured for these heterogeneous reactions is found to be fast: γo Cl = 0.07. The rapid formation of hydrogen chloride corresponding with the disappearance of atomic chlorine is highlighted. Furthermore, the formation of new chlorinated species on the solid substrate has been detected by TOF SIMS analysis leading to an ageing process of the surface. A heterogeneous recombination of Cl atoms to Cl2 molecules was observed for aged surfaces.


Multiphase chemistry Atomic chlorine Palmitic acid films Uptake coefficient 



This work is a part of the IRENI program, financially supported by the Nord Pas-de-Calais Regional Council and by the European Regional Development Fund. Funding was also provided by a Marie Curie fellowship. The authors thank N. Nuns for TOF SIMS analyses.


  1. Aubin, D.G., Abbatt, J.P.D.: Interaction of NO2 with hydrocarbon soot: focus on HONO yield, surface modification, and mechanism. J. Phys. Chem. A 111, 6263–6273 (2007)CrossRefGoogle Scholar
  2. Barger, W.R., Garrett, W.D.: Surface active organic material in air over the Mediterranean and over the Eastern Equatorial Pacific. J. Geophys. Res. 81, 3151–3157 (1976)CrossRefGoogle Scholar
  3. Bedjanian, Y., Romanias, M.N., El Zein, A.: Uptake of HO2 radicals on Arizona test dust. Atmos. Chem. Phys. 13, 6461–6471 (2013)CrossRefGoogle Scholar
  4. Bertram, A.K., Ivanov, A.V., Hunter, M., Molina, L.T., Molina, M.J.: The reaction probability of OH on organic surfaces of tropospheric interest. J. Phys. Chem. A 105, 9415–9421 (2001)CrossRefGoogle Scholar
  5. Blanchard, D.C.: Sea-to-Air transport of surface active material. Science 146, 396–397 (1964)CrossRefGoogle Scholar
  6. Cavalli, F. et al. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J. Geophys. Res. 109, D24215.1–D24215.14 (2004)Google Scholar
  7. Ciuraru, R., Gosselin, S., Visez, N., Petitprez, D.: Heterogeneous reactivity of chlorine atoms with sodium chloride and synthetic sea salt particles. Phys. Chem. Chem. Phys. 13, 19460–19470 (2011)CrossRefGoogle Scholar
  8. Ciuraru, R., Gosselin, S., Visez, N., Petitprez, D.: Heterogeneous reactivity of chlorine atoms with ammonium sulphate and ammonium nitrate particles. Phys.Chem. Chem. Physics 14, 4527–4537 (2012)CrossRefGoogle Scholar
  9. Donaldson, D.J., Vaida, V.: The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem. Rev. 106, 1445–1461 (2006)CrossRefGoogle Scholar
  10. Duce, R.A., Unni, C.K., Ray, B.J., Prospero, J.M., Merrill, J.T.: Long-range atmospheric transport of soil dust from Asia to the Tropical North Pacific: temporal variability. Science 209, 1522–1524 (1980)CrossRefGoogle Scholar
  11. Ellison, G.B., Tuck, A.F., Vaida, V.: Atmospheric processing of organic aerosols. J. Geophys. Res. 104, 11633–11641 (1999)CrossRefGoogle Scholar
  12. Finlayson-Pitts, B.: Chlorine atoms as a potential tropospheric oxidant in the marine boundary layer. Res. Chem. Intermed. 19, 235–249 (1993)CrossRefGoogle Scholar
  13. Finlayson-Pitts, B.J.: Halogens in the troposphere. Anal. Chem. 82, 770–776 (2010)CrossRefGoogle Scholar
  14. Finlayson-Pitts, B. J. & Pitts, J., Jr. Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic Press, San Diego (1999)Google Scholar
  15. George, I.J., Abbatt, J.P.D.: Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nature Chem. 2, 713–722 (2010)CrossRefGoogle Scholar
  16. George, I.J., Vlasenko, A., Slowik, J.G., Broekhuizen, K., Abbatt, J.P.D.: Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. Atmos. Chem. Physics 7, 4187–4201 (2007)CrossRefGoogle Scholar
  17. George, C., Behnke, W., Zetzsch, C.: Radicals in the atmosphere: a changing world! Chem. Phys. Chem. 11, 3059–3062 (2010)CrossRefGoogle Scholar
  18. Gogou, A.I., Apostolaki, M., Stephanou, E.G.: Determination of organic molecular markers in marine aerosols and sediments: one-step flash chromatography compound class fractionation and capillary gas chromatographic analysis. Journal of Chromatography A 799, 215–231 (1998)CrossRefGoogle Scholar
  19. Hardy, J.T.: The sea surface microlayer: Biology, chemistry and anthropogenic enrichment. Progress In Oceanography 11, 307–328 (1982)CrossRefGoogle Scholar
  20. Hearn, J.D., Renbaum, L.H., Wang, X., Smith, G.D.: Kinetics and products from reaction of Cl radicals with dioctyl sebacate (DOS) particles in O2: a model for radical-initiated oxidation of organic aerosols. Phys. Chem. Chem. Physics 9, 4803–4813 (2007)CrossRefGoogle Scholar
  21. Hwang, C.-J., Jiang, R.-C., Su, T.-M.: Measurements of the diffusion coefficients of atomic chlorine in rare gases. J. Chem. Physics 84, 5095–5101 (1986)CrossRefGoogle Scholar
  22. Kawamura, K., Gagosian, R.B.: Mid-chain ketocarboxylic acids in the remote marine atmosphere: Distribution patterns and possible formation mechanisms. J Atmos. Chem. 11, 107–122 (1990)CrossRefGoogle Scholar
  23. Liss, P. S. & Duce, R. A. The sea surface and global change. Cambridge University Press, Cambridge (1997)Google Scholar
  24. Liu, C.-L., et al.: The direct observation of secondary radical chain chemistry in the heterogeneous reaction of chlorine atoms with submicron squalane droplets. Phys. Chem. Chem. Phys. 13, 8993–9007 (2011)CrossRefGoogle Scholar
  25. Marty, J.C., Saliot, A., Buat-Ménard, P., Chesselet, R., Hunter, K.A.: Relationship between the lipid compositions of marine aerosols, the sea surface microlayer, and subsurface water. J. Geophys. Res. 84, 5707–5716 (1979)CrossRefGoogle Scholar
  26. McNeill, V.F., Yatavelli, R.L.N., Thornton, J.A., Stipe, C.B., Landgrebe, O.: Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase. Atmos. Chem. Phys. 8, 5465–5476 (2008)CrossRefGoogle Scholar
  27. Mendez, M., et al.: Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification. Atmos. Chem. Physics Discuss. 13, 16925–16960 (2013)CrossRefGoogle Scholar
  28. Mochida, M., Kitamori, Y., Kawamura, K., Nojiri, Y. & Suzuki, K. Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on sea-salt particles. J. Geophys. Res. 107, AAC1.1–AAC1.10 (2002).Google Scholar
  29. Moise, T., Rudich, Y.: Uptake of Cl and Br by organic surfaces—A perspective on organic aerosols processing by tropospheric oxidants. Geophys. Res. Lett. 28, 4083–4086 (2001)CrossRefGoogle Scholar
  30. O’Dowd, C.D., et al.: Biogenically driven organic contribution to marine aerosol. Nature 431, 676–680 (2004)CrossRefGoogle Scholar
  31. Oros, D.R., Simoneit, B.R.T.: Identification and emission factors of molecular tracers in organic aerosols from biomass burning. Part 1. Temperate climate conifers. Applied Geochemistry 16, 1513–1544 (2001)CrossRefGoogle Scholar
  32. Oros, D.R., Abas, M.R.B., Omar, N.Y.M.J., Rahman, N.A., Simoneit, B.R.T.: Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses. Applied Geochemistry 21, 919–940 (2006)CrossRefGoogle Scholar
  33. Osthoff, H.D., et al.: High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature Geosci. 1, 324–328 (2008)CrossRefGoogle Scholar
  34. Pechtl, S., von Glasow, R.: Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: A model study. Geophys. Res. Lett. 34, L11813 (2007)CrossRefGoogle Scholar
  35. Pöschl, U., et al.: Mass accommodation coefficient of H2SO4 vapor on aqueous sulfuric acid surfaces and gaseous diffusion coefficient of H2SO4 in N2/H2O. J. Phys. Chem. A. 102, 10082–10089 (1998)CrossRefGoogle Scholar
  36. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The properties of gases and liquids. McGraw-Hill, New York (1987)Google Scholar
  37. Rossi, M.J.: Heterogeneous reactions on salts. Chem. Rev. 103, 4823–4882 (2003)CrossRefGoogle Scholar
  38. Rudich, Y.: Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chemical Reviews 103, 5097–5124 (2003)CrossRefGoogle Scholar
  39. Rudich, Y., Donahue, N.M., Mentel, T.F.: Aging of organic aerosol: bridging the gap between laboratory and field studies. Ann. Rev. Phys. Chem. 58, 321–352 (2007)CrossRefGoogle Scholar
  40. Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T.: Measurement of emissions from air pollution sources. 3. C1 − C29 organic compounds from fireplace combustion of wood. Environ. Sci. Technol. 35, 1716–1728 (2001)CrossRefGoogle Scholar
  41. Sciare, J., et al.: Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning. Atmos. Chem. Phys. 8, 5551–5563 (2008)CrossRefGoogle Scholar
  42. Simoneit, B.R.T., Kobayashi, M., Mochida, M., Kawamura, K., Huebert, B.J.: Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds. J. Geophys. Res 109, D19S09 (2004)Google Scholar
  43. Simpson, W.R., et al.: Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 7, 4375–4418 (2007)CrossRefGoogle Scholar
  44. Slade, J.H., Knopf, D.A.: Heterogeneous OH oxidation of biomass burning organic aerosol surrogate compounds: assessment of volatilisation products and the role of OH concentration on the reactive uptake kinetics. Phys. Chem. Chem. Phys. 15, 5898–5915 (2013)CrossRefGoogle Scholar
  45. Spicer, C.W., et al.: Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 394, 353–356 (1998)CrossRefGoogle Scholar
  46. Tervahattu, H., Juhanoja, J., Kupiainen, K.: Identification of an organic coating on marine aerosol particles by TOF-SIMS. J. Geophys. Res. 107, 4319 (2002)CrossRefGoogle Scholar
  47. Tervahattu, H., et al.: Fatty acids on continental sulfate aerosol particles. J. Geophys. Res. (110) (2005)Google Scholar
  48. Yoon, Y. J. et al. Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. J. Geophys. Res. 112, D04206.1–D04206.14 (2007)Google Scholar
  49. Zasypkin, A.Y., Grigor’eva, V.M., Korchak, V.N., Gershenson, Y.M.: A formula for summing of kinetic resistances for mobile and stationary media: I. Cylindrical reactor. Kinetics and Catalysis 38(6), 772–781 (1997). ISSN 0023-1584Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Raluca Ciuraru
    • 1
    • 3
  • Michael Ward
    • 2
  • Maxence Mendez
    • 1
    • 4
  • Sylvie Gosselin
    • 1
  • Nicolas Visez
    • 1
  • Denis Petitprez
    • 1
  1. 1.Laboratoire de Physico-Chimie des Processus de Combustion et de l’AtmosphèrePC2A UMR 8522 CNRS-Lille1Villeneuve d’AscqFrance
  2. 2.Christopher Ingold LaboratoriesUniversity College of LondonLondonUK
  3. 3.IRCELYON, Institut de Recherches sur la Catalyse et l’Environnement de LyonCNRS UMR 5256Villeurbanne CedexFrance
  4. 4.Laboratoire Image Ville EnvironnementCNRS/UDS, UMR7362StrasbourgFrance

Personalised recommendations