Advertisement

Journal of Atmospheric Chemistry

, Volume 69, Issue 4, pp 253–272 | Cite as

Formation of carbonyls and hydroperoxyenals (HPALDs) from the OH radical reaction of isoprene for low-NOx conditions: influence of temperature and water vapour content

  • T. Berndt
Article

Abstract

The formation of gas-phase products from the reaction of OH radicals with isoprene for low-NOx conditions ([NOx] ≤ 1010 molecule cm−3) has been studied in an atmospheric pressure flow tube (Institute for Tropospheric Research-Laminar Flow Tube, IfT-LFT) operating in the temperature range of 293–343 K and a relative humidity of < 0.5 % up to 50 %. The photolysis of H2O2 or ozone photolysis in the presence of water vapour served as the NOx-free OH radical sources. For dry conditions at 293 K, the measured yields of methyl vinyl ketone (MVK), 0.07 ± 0.02, and methacrolein (MACR), 0.12 ± 0.04, were in reasonable agreement with literature data. Beside the C4-carbonyls, further product signals have been attributed tentatively to glycolaldehyde, methylglyoxal, hydroxyacetone, 3-methylfuran, C5-hydroperoxyenals (HPALDs) and C5-hydroxy-hydroperoxides. A simplified, “classical” reaction mechanism without efficient HPALD production describes well the observed yield for MVK and MACR. Unexpected high MVK and MACR yields of up to 0.65 in total were measured under conditions of a relative humidity of 50 % using both OH radical sources and two different measurement techniques for organics (proton transfer reaction mass spectrometry and gas chromatography with flame ionization detector). The reaction mechanism applied is not able to describe the strong increase of MVK and MACR yields with increasing water vapour content. The signal attributed to the HPALDs showed a distinct rise of about one order of magnitude increasing the temperature from 293 K to 343 K. A rough estimate leads to a HPALD yield of 0.32 at 343 K with an uncertainty of a factor of two. The results of this study do not support a predominant formation of HPALDs under atmospheric conditions in low-NOx areas. The surprisingly high MVK and MACR yields measured for a relative humidity of 50 % and the formation of glycolaldehyde, methylglyoxal and hydroxyacetone necessitate further research.

Keywords

Isoprene OH radical reaction Low-NOx condition HPALD 

Notes

Acknowledgments

Technical assistance by K. Pielok, R. Gräfe and A. Rohmer is gratefully acknowledged.

References

  1. Aloisio, S., Francisco, J.S.: Existence of a hydroperoxy and water (HO2-H2O) radical complex. J. Phys. Chem. A 102, 1899–1902 (1998)CrossRefGoogle Scholar
  2. Archibald, A.T., Cooke, M.C., Utembe, S.R., Shallcross, D.E., Derwent, R.G., Jenkin, M.E.: Impact of mechanistic changes on HOx formation and recycling in the oxidation of isoprene. Atmos. Chem. Phys. 10, 8097–8118 (2010)CrossRefGoogle Scholar
  3. Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data 26, 1–216 (1994)Google Scholar
  4. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738 (2004)CrossRefGoogle Scholar
  5. Berndt, T., Böge, O.: Atmospheric reaction of OH radicals with 1,3,-butadiene and 4-Hydroxy-2-butenal. J. Phys. Chem. A 111, 12099–12105 (2007)CrossRefGoogle Scholar
  6. Clark, J., Call, S.T., Austin, D.E., Hanson, J.C.: Computational study of isoprene hydroxyalkyl peroxy radical–water complexes (C5H8(OH)O2-H2O). J. Phys. Chem. A 114, 6534–6541 (2010)CrossRefGoogle Scholar
  7. Crounse, J.D., Paulot, F., Kjaergaard, H.G., Wennberg, P.O.: Peroxy radical isomerisation in the oxidation of isoprene. Phys. Chem. Chem. Phys. 13, 13607–13613 (2011)CrossRefGoogle Scholar
  8. da Silva, G., Graham, C., Wang, Z.: Unimolecular β-hydroxyperoxy radical decomposition with OH recycling in the photochemical oxidation of isoprene. Environ. Sci. Technol. 44, 250–256 (2010)CrossRefGoogle Scholar
  9. Dillon, T.J., Crowley, J.N.: Direct detection of OH formation in the reaction of HO2 with CH3C(O)O2 and other substituted peroxy radicals. Atmos. Chem. Phys. 8, 4877–4889 (2008)CrossRefGoogle Scholar
  10. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P.: A global model of nature volatile organic compound emissions. J. Geophys. Res. 100, 8873–8892 (1995)CrossRefGoogle Scholar
  11. Hasson, A.S., Tyndall, G.S., Orlando, J.J.: A product yield study of the reaction of HO2 radicals with ethyl peroxy (C2H5O2), acetyl peroxy (CH3C(O)O2), and acetonyl peroxy (CH3C(O)CH2O2) radicals. J. Phys. Chem. A 108, 5979–5989 (2004)CrossRefGoogle Scholar
  12. Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C., Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S., Shao, M., Zeng, L., Wahner, A., Zhang, Y.: Amplified trace gas removel in the troposphere. Science 324, 1702–1704 (2009)CrossRefGoogle Scholar
  13. Ivanov, A.V., Trakhtenberg, S., Bertram, A.K., Gershenzon, Y.M., Molina, M.J.: OH, HO2, and ozone gaseous diffusion coefficients. J. Phys. Chem. A 111, 1632–1637 (2007)CrossRefGoogle Scholar
  14. Jenkin, M.E., Boyd, A.A., Lesclaux, R.: Peroxy radical kinetics from the OH-Initiated oxidation of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene and isoprene. J. Atmos. Chem. 29, 267–298 (1998)CrossRefGoogle Scholar
  15. Karl, M., Dorn, H.-P., Holland, F., Koppmann, R., Poppe, D., Rupp, L., Schaub, A., Wahner, A.: Product study of the reaction of OH radicals with isoprene in the atmosphere simulation chamber SAPHIR. J. Atmos. Chem. 55, 167–187 (2006)CrossRefGoogle Scholar
  16. Karl, T., Guenther, A., Turnipseed, A., Tyndall, G., Artaxo, P., Martin, S.: Rapid formation of isoprene photo-oxidation products observed in Amazonia. Atmos. Chem. Phys. 9, 7753–7767 (2009)CrossRefGoogle Scholar
  17. Lelieveld, J., Butler, T.M., Crowley, J.N., Dillon, T.J., Fischer, H., Ganzeveld, H., Harder, H., Lawrence, M.G., Martinez, M., Taraborrelli, D., Williams, J.: Atmospheric oxidation capacity sustained by a tropical forest. Nature 452, 737–740 (2008)CrossRefGoogle Scholar
  18. Lindinger, W., Hansel, A., Jordan, A.: On-line monitoring of volatile organic compounds at ppt levels by means of Proton-Transfer_Reaction Mass Spectrometry (PTR-MS) Medical application, food control and environmental research. Int. J. Mass Spectrom. Ion Processes 173, 191–241 (1998)CrossRefGoogle Scholar
  19. MCM v3.2: The chemical mechanistic information was taken from the Master Chemical Mechanism, MCM v3.2, via website: http://mcm.leeds.ac.uk/MCM. (2012). Accessed 22 June 2012
  20. Miyoshi, A., Hatakeyama, S., Washida, N.: OH radical initiated photooxodation of isoprene: an estimate of global CO production. J. Geophys. Res. 99, 18779–18787 (1994)CrossRefGoogle Scholar
  21. Navarro, M.A., Dusanter, S., Hites, R.A., Stevens, P.S.: Radical dependence of the yields of methacrolein and methyl vinyl ketone from the OH-initiated oxidation of isoprene under NOx-free conditions. Environ. Sci. Technol. 45, 923–929 (2011)CrossRefGoogle Scholar
  22. Neeb, P., Moortgat, G.K.: Formation of OH radicals in the gas-phase reaction of propene, isobutene and isoprene with O3: yields and mechanistic implications. J. Phys. Chem. A 103, 9003–9012 (1999)CrossRefGoogle Scholar
  23. Paulot, F., Crounse, J.D., Kjaergaard, H.G., Kurten, A., St Clair, J.M., Seinfeld, J.H., Wennberg, P.O.: Unexpected epoxide formation in the gas-phase photoxidation of isoprene. Science 325, 730–733 (2009)CrossRefGoogle Scholar
  24. Paulson, S.E., Flagan, R.C., Seinfeld, J.H.: Atmospheric photooxidation of isoprene part I: the hydroxyl and ground state state atomic oxygen reactions. Int. J. Chem. Kinet. 24, 79–101 (1992)CrossRefGoogle Scholar
  25. Peeters, J., Nguyen, T.L., Vereecken, L.: HOx radical regeneration in the oxidation of isoprene. Phys. Chem. Chem. Phys. 11, 5935–5939 (2009)CrossRefGoogle Scholar
  26. Ruppert, L., Becker, K.H.: A product study of the OH radical-initiated oxidation of isoprene: formation of C5-unsaturated diols. Atmos. Environ. 34, 1529–1542 (2000)CrossRefGoogle Scholar
  27. Stavrakou, T., Peeters, J., Müller, J.-F.: Improved global modelling of HOx recycling in isoprene oxidation: evaluation against GABRIEL and INTEX-A aircraft campaign measurements. Atmos. Chem. Phys. 10, 9863–9878 (2010)CrossRefGoogle Scholar
  28. Stone, D., Evans, M.J., Edwards, P.M., Commane, R., Ingham, T., Rickard, A.R., Brookes, D.M., Hopkins, J., Leigh, R.J., Lewis, A.C., Monks, P.S., Oram, D., Reevers, C.E., Stewart, D., Heard, D.E.: Isoprene oxidation mechanisms: measurements and modelling of OH and HO2 over a South-East Asian tropical rainforest during the OP3 field campaign. Atmos. Chem. Phys. 11, 6749–6771 (2011)CrossRefGoogle Scholar
  29. Tan, D., Faloona, I., Simpas, J.B., Brune, W., Shepson, P.B., Couch, T.L., Sumner, A.L., Carroll, M.A., Thornberry, T., Apel, E., Reimer, D., Stockwell, W.: HOx budgets in a deciduous forest: results from the PROPHET summer 1998 campaign. J. Geophys. Res. 106(D20), 24407–24427 (2001)CrossRefGoogle Scholar
  30. Taraborrelli, D., Lawrence, M.G., Crowley, J.N., Dillion, T.J., Groß, C.B.M., Vereecken, L., Lelieveld, J.: Hydroxyl radical buffered by isoprene oxidation over tropical forest. Nat. Geosci. 5, 190–193 (2012)CrossRefGoogle Scholar
  31. Tuazon, E.C., Atkinson, R.: A product study of the gas-phase reaction of isoprene with hte OH radical in the presence of NOx. Int. J. Chem. Kinet. 22, 1221–1236 (1990)CrossRefGoogle Scholar
  32. Viegas, L.P., Varandas, A.J.C.: Can water be a catalyst on the HO2 + H2O + O3 reactive cluster ? Chem. Phys. 399, 17–22 (2012)CrossRefGoogle Scholar
  33. Whalley, L.K., Edwards, P.M., Furneaux, K.L., Goddard, A., Ingham, T., Evans, M.J., Stone, D., Hopkins, J.R., Jones, C.E., Karunaharan, A., Lee, J.D., Lewis, A.C., Monks, P.S., Moller, S.J., Heard, D.E.: Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest. Atmos. Chem. Phys. 11, 7223–7233 (2011)CrossRefGoogle Scholar
  34. Wolfe, G.M., Crounse, J.D., Parrish, J.D., St Clair, J.M., Beaver, M.R., Paulot, F., Yoon, T.P., Wennberg, P.O., Keutsch., F.N.: Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Phys. Chem. Chem. Phys. 14, 7276–7286 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Leibniz-Institut für Troposphärenforschung e.V.LeipzigGermany

Personalised recommendations