Skip to main content

Advertisement

Log in

Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Black carbon (BC) concentrations were measured in the southeast (SE) Tibetan Plateau along the valley of the Yarlung Tsangpo River during winter (between November, 2008 and January, 2009). The measured mean concentration (0.75 μg m−3) is significantly higher than the concentrations (0.004–0.34 μg m−3) measured in background and remote regions of the globe, indicating that Tibetan glaciers are contaminated by BC particles in the Plateau. Because BC particles play important roles for the climate in the Tibetan Plateau, the sources and causes of the BC contamination need to be understood and investigated. In this study, a mesocale dynamical model (WRF) with BC particle modules is applied for analyzing the measurement. The analysis suggests that the major sources for the contamination in the SE Plateau were mainly from the BC emissions in eastern Indian and Bangladesh. Because of the west prevailing winds, the heavy emissions in China had no significant effects on the SE Plateau in winter. Usually, the high altitude of the Himalayas acts a physical wall, inhibiting the transport of BC particles across the mountains to the plateau. This study, however, finds that the Yarlung Tsangpo River valley causes a 'leaking wall', whereby under certain meteorological conditions, BC particles are being transported up onto the glacier. This too causes variability of BC concentrations (ranging from 0.3 to 1.5 μg m−3) in a time scale of a few days. The analysis of the variability suggests that the “leaking wall” effect cannot occur when the prevailing winds were northwest winds, during which the BC transport along the valley of the Yarlung Tsangpo River was obstructed. As a result, large variability of BC concentration was observed due to the change of prevailing wind directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen, G.A., Lawrence, J., Koutrakis, P.: Field validation of a semi-continuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA. Atmos. Environ. 33, 817–823 (1998)

    Article  Google Scholar 

  • Arnott, W.P., Moosmuller, H., Sheridan, P.J., Ogren, J.A., Raspet, R., Slaton, W.V., Hand, J.L., Kreidenweis, S.M., Collett Jr., J.L.: Photoacoustic and filter-based ambient aerosol light absorption measurements: instrument comparisons and the role of relative humidity. J. Geophys. Res. 108, 4034 (2003). doi:10.1029/2002JD002165

    Article  Google Scholar 

  • Babu, S.S., Moorthy, K.K.: Aerosol black carbon over a tropical coastal station in India. Geophys. Res. Lett. 29(23), 2098 (2002). doi:10.1029/2002GL015662

    Article  Google Scholar 

  • Barnett, T.P., Adam, J.C., Lettenmaier, D.P.: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005)

    Article  Google Scholar 

  • Bei, N., Lei, W., Zavala, M., Molina, L.T.: Ozone predictabilities due to meteorological uncertainties in the Mexico City basin using ensemble forecasts. Atmos. Chem. Phys. 10, 6295–6309 (2010). doi:10.5194/acp-10-6295-2010

    Article  Google Scholar 

  • Bhugwant, C., Cachier, H., Bessafi, H., Leveau, J.: Impact of traffic on black carbon aerosol concentration at la ReH union Island (Southern Indian Ocean). Atmos. Environ. 34, 3463–3473 (2000)

    Article  Google Scholar 

  • Bond, T., Streets, D.G., Yarber, F.Y.K.F., Nelson, S.M., Woo, J.H., Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 109, D14203 (2004). doi:10.1029/2003JD003697

    Article  Google Scholar 

  • Bond, T.C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D.G., Trautmann, N.M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem. Cy. 21, GB2018 (2007). doi:10.1029/2006GB002840

    Article  Google Scholar 

  • Cao, J.J., Lee, S.C., Chow, J.C., Watson, J.G., Ho, K.F., Zhang, R.J., Jin, Z.D., Shen, Z.X., Chen, G.C., Kang, Y.M., Zou, S.C., Zhang, L.Z., Qi, S.H., Dai, M.H., Cheng, Y., Hu, K.: Spatial and seasonal distributions of carbonaceous aerosols over China. J. Geophys. Res. 112, D22S11 (2007). doi:10.1029/2006JD008205

    Article  Google Scholar 

  • Cao, J.J., Xu, B.Q., He, J.Q., Liu, X.Q., Han, Y.M., Wang, G.H., Zhu, C.S.: Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote mountainous region in western China. Atmos. Environ. 43, 4444–4452 (2009a)

    Article  Google Scholar 

  • Cao, J.J., Zhu, C.S., Chow, J.C., Watson, J.G., Han, Y.M., Wang, G.H., Shen, Z.X., An, Z.S.: Black carbon relationships with emissions and meteorology in Xi'an. Chin. Atmos. Res. 94, 194–202 (2009b)

    Article  Google Scholar 

  • Carrico, C.M., Bergin, M.H., Shrestha, A.B., Dibb, J.E., Gomes, L., Harris, J.M.: The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmos. Environ. 37(20), 2811–2824 (2003)

    Article  Google Scholar 

  • de Foy, B., Fast, J.D., Paech, S.J., Phillips, D., Walters, J.T., Coulter, R.L., Martin, T.J., Pekour, M.S., Shaw, W.J., Kastendeuch, P.P., Marley, N.A., Retama, A., MolinaBasin-scale, L.T.: Wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis. Atmos. Chem. Phys. 8, 1209–1224 (2008)

    Article  Google Scholar 

  • Engling, G., Zhang, Y.N., Chan, C.Y., Sang, X.F., Lin, M., Ho, K.F., Li, Y.S., Lin, C.Y., Lee, J.J.: Characterization and sources of aerosol particles over the Southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus (2010). doi:10.1111/j.1600-0889.2010.00512

  • Flanner, M.G., Zender, C.S., Randerson, J.T., Rasch, P.J.: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112 (2007). doi:10.1029/2006JD008003

  • Flanner, M.G., et al.: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 9, 2481–2497 (2009)

    Article  Google Scholar 

  • Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Wilczak, J., Eder, B.: Fully coupled "online" chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005)

    Article  Google Scholar 

  • Hansen, A., Rosen, H., Novakov, T.: The aethalometer—An instrument for the real-time “measurement of optical absorption by aerosol particles. Sci. Total Environ. 36, 191–196 (1984)

    Article  Google Scholar 

  • Hansen, J., Nazarenko, L.: Soot climate forcing via snow and ice albedos. PNAS 101, 423–428 (2004)

    Article  Google Scholar 

  • Jacobson, M.Z.: Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res. 109, D21201 (2004). doi:10.1029/2004JD004945

    Article  Google Scholar 

  • Li, G., Zhang, R., Fan, J., Tie, X.: Impacts of black carbon aerosol on photolysis frequencies and ozone in the houston area. J. Geophys. Res. 110, D23206 (2005). doi:10.1029/2005JD005898

    Article  Google Scholar 

  • McConnel, J., et al.: 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317, 1381–1384 (2007)

    Article  Google Scholar 

  • Park, R., Jacob, D.J., Kumar, N., Yantosca, R.M.: Regional visibility statistics in the United States: natural and transboundary pollution influences, and implications for the Regional Haze Rule. Atmos. Environ. 40, 5405–5423 (2006). doi:10.1016/j.atmosenv.2006.04.059

    Article  Google Scholar 

  • Putaud, J.-P., Raes, F., Dingenen, R.V., et al.: A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38, 2579–2595 (2004)

    Article  Google Scholar 

  • Ramanathan, V., Carmichael, G.: Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008)

    Article  Google Scholar 

  • Ruellan, S., Cachier, H.: Characterisation of fresh particulate vehicular exhausts near a Paris high flow road. Atmos. Environ. 35, 453–468 (2001)

    Article  Google Scholar 

  • Safai, P.D., Kewat, S., Praveen, P.S., Rao, P.S.P., Momin, G.A., Ali, K., Devara, P.C.S.: Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos. Environ. 41, 2699–2709 (2007)

    Article  Google Scholar 

  • Streets, D.G., Bond, T.C., Carmichael, G.R., Fernandes, S.D., Fu, Q., He, D., Klimont, Z., Nelson, S.M., Tsai, N.Y., Wang, M.Q., Woo, J.H., Yarber, K.F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 108, 8809 (2003)

    Article  Google Scholar 

  • Tang, J., Wen, Y.O., Zhou, L.X.: Observational study of black carbon in clean air area of Western China. Q. J. Appl. Meteorol. 10(2), 160–170 (1999). In Chinese

    Google Scholar 

  • Tie, X., Cao, J.: Aerosol pollutions in eastern china; present and future impacts on environment. Particuology 7, 426–431 (2009)

    Article  Google Scholar 

  • Tie, X., Geng, F.H., Peng, L., Gao, W., Zhao, C.S.: Measurement and modeling of O3 variability in Shanghai, China; application of the WRF-Chem model. Atmos. Environ. 43, 4289–4302 (2009)

    Article  Google Scholar 

  • Tripathi, S.N., Dey, S., Tare, V., Satheesh, S.K.: Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys. Res. Lett. 32, L08802 (2005). doi:10.1029/2005GL022515

    Article  Google Scholar 

  • Warren, S., Wiscombe, W.: A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J. Atmos. Sci. 37, 2734–2745 (1980)

    Article  Google Scholar 

  • Watson, J.G., Chow, J.G., Chen, L.W.: Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5, 65–102 (2005)

    Google Scholar 

  • Wolff, E.W., Cachier, H.: Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. J. Geophys. Res. 103, 11033–11041 (1998)

    Article  Google Scholar 

  • Xu, B.Q., Cao, J.J., Hansen, J., Yao, T.D., Joswia, D.R., Wang, N.L., Wu, G.J., Wang, M., Zhao, H.B., Yang, W., Liu, X.Q., He, J.Q.: Black soot and the survival of Tibetan glaciers. PNAS 106, 22114–22118 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by National Natural Science Foundation of China (NSFC) under Grant No. 40925009, 40575060 and 40705046, Ministry of Science and Technology of China under Grant No. 2006BAC12B00; The Beijing Natural Science Foundation under Grant No. 80710002; The National Center for Atmospheric Research is sponsored by the National Science Foundation and operated by UCAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexi Tie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Tie, X., Xu, B. et al. Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau. J Atmos Chem 67, 45–60 (2010). https://doi.org/10.1007/s10874-011-9202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-011-9202-5

Keywords

Navigation