Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau

  • Junji Cao
  • Xuexi Tie
  • Baiqing Xu
  • Zhuzi Zhao
  • Chongshu Zhu
  • Guohui Li
  • Suixin Liu


Black carbon (BC) concentrations were measured in the southeast (SE) Tibetan Plateau along the valley of the Yarlung Tsangpo River during winter (between November, 2008 and January, 2009). The measured mean concentration (0.75 μg m−3) is significantly higher than the concentrations (0.004–0.34 μg m−3) measured in background and remote regions of the globe, indicating that Tibetan glaciers are contaminated by BC particles in the Plateau. Because BC particles play important roles for the climate in the Tibetan Plateau, the sources and causes of the BC contamination need to be understood and investigated. In this study, a mesocale dynamical model (WRF) with BC particle modules is applied for analyzing the measurement. The analysis suggests that the major sources for the contamination in the SE Plateau were mainly from the BC emissions in eastern Indian and Bangladesh. Because of the west prevailing winds, the heavy emissions in China had no significant effects on the SE Plateau in winter. Usually, the high altitude of the Himalayas acts a physical wall, inhibiting the transport of BC particles across the mountains to the plateau. This study, however, finds that the Yarlung Tsangpo River valley causes a 'leaking wall', whereby under certain meteorological conditions, BC particles are being transported up onto the glacier. This too causes variability of BC concentrations (ranging from 0.3 to 1.5 μg m−3) in a time scale of a few days. The analysis of the variability suggests that the “leaking wall” effect cannot occur when the prevailing winds were northwest winds, during which the BC transport along the valley of the Yarlung Tsangpo River was obstructed. As a result, large variability of BC concentration was observed due to the change of prevailing wind directions.


Elemental carbon Leaking wall Himalayas 



This research is partially supported by National Natural Science Foundation of China (NSFC) under Grant No. 40925009, 40575060 and 40705046, Ministry of Science and Technology of China under Grant No. 2006BAC12B00; The Beijing Natural Science Foundation under Grant No. 80710002; The National Center for Atmospheric Research is sponsored by the National Science Foundation and operated by UCAR.


  1. Allen, G.A., Lawrence, J., Koutrakis, P.: Field validation of a semi-continuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA. Atmos. Environ. 33, 817–823 (1998)CrossRefGoogle Scholar
  2. Arnott, W.P., Moosmuller, H., Sheridan, P.J., Ogren, J.A., Raspet, R., Slaton, W.V., Hand, J.L., Kreidenweis, S.M., Collett Jr., J.L.: Photoacoustic and filter-based ambient aerosol light absorption measurements: instrument comparisons and the role of relative humidity. J. Geophys. Res. 108, 4034 (2003). doi: 10.1029/2002JD002165 CrossRefGoogle Scholar
  3. Babu, S.S., Moorthy, K.K.: Aerosol black carbon over a tropical coastal station in India. Geophys. Res. Lett. 29(23), 2098 (2002). doi: 10.1029/2002GL015662 CrossRefGoogle Scholar
  4. Barnett, T.P., Adam, J.C., Lettenmaier, D.P.: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005)CrossRefGoogle Scholar
  5. Bei, N., Lei, W., Zavala, M., Molina, L.T.: Ozone predictabilities due to meteorological uncertainties in the Mexico City basin using ensemble forecasts. Atmos. Chem. Phys. 10, 6295–6309 (2010). doi: 10.5194/acp-10-6295-2010 CrossRefGoogle Scholar
  6. Bhugwant, C., Cachier, H., Bessafi, H., Leveau, J.: Impact of traffic on black carbon aerosol concentration at la ReH union Island (Southern Indian Ocean). Atmos. Environ. 34, 3463–3473 (2000)CrossRefGoogle Scholar
  7. Bond, T., Streets, D.G., Yarber, F.Y.K.F., Nelson, S.M., Woo, J.H., Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 109, D14203 (2004). doi: 10.1029/2003JD003697 CrossRefGoogle Scholar
  8. Bond, T.C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D.G., Trautmann, N.M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem. Cy. 21, GB2018 (2007). doi: 10.1029/2006GB002840 CrossRefGoogle Scholar
  9. Cao, J.J., Lee, S.C., Chow, J.C., Watson, J.G., Ho, K.F., Zhang, R.J., Jin, Z.D., Shen, Z.X., Chen, G.C., Kang, Y.M., Zou, S.C., Zhang, L.Z., Qi, S.H., Dai, M.H., Cheng, Y., Hu, K.: Spatial and seasonal distributions of carbonaceous aerosols over China. J. Geophys. Res. 112, D22S11 (2007). doi: 10.1029/2006JD008205 CrossRefGoogle Scholar
  10. Cao, J.J., Xu, B.Q., He, J.Q., Liu, X.Q., Han, Y.M., Wang, G.H., Zhu, C.S.: Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote mountainous region in western China. Atmos. Environ. 43, 4444–4452 (2009a)CrossRefGoogle Scholar
  11. Cao, J.J., Zhu, C.S., Chow, J.C., Watson, J.G., Han, Y.M., Wang, G.H., Shen, Z.X., An, Z.S.: Black carbon relationships with emissions and meteorology in Xi'an. Chin. Atmos. Res. 94, 194–202 (2009b)CrossRefGoogle Scholar
  12. Carrico, C.M., Bergin, M.H., Shrestha, A.B., Dibb, J.E., Gomes, L., Harris, J.M.: The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmos. Environ. 37(20), 2811–2824 (2003)CrossRefGoogle Scholar
  13. de Foy, B., Fast, J.D., Paech, S.J., Phillips, D., Walters, J.T., Coulter, R.L., Martin, T.J., Pekour, M.S., Shaw, W.J., Kastendeuch, P.P., Marley, N.A., Retama, A., MolinaBasin-scale, L.T.: Wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis. Atmos. Chem. Phys. 8, 1209–1224 (2008)CrossRefGoogle Scholar
  14. Engling, G., Zhang, Y.N., Chan, C.Y., Sang, X.F., Lin, M., Ho, K.F., Li, Y.S., Lin, C.Y., Lee, J.J.: Characterization and sources of aerosol particles over the Southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus (2010). doi: 10.1111/j.1600-0889.2010.00512
  15. Flanner, M.G., Zender, C.S., Randerson, J.T., Rasch, P.J.: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112 (2007). doi: 10.1029/2006JD008003
  16. Flanner, M.G., et al.: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 9, 2481–2497 (2009)CrossRefGoogle Scholar
  17. Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Wilczak, J., Eder, B.: Fully coupled "online" chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005)CrossRefGoogle Scholar
  18. Hansen, A., Rosen, H., Novakov, T.: The aethalometer—An instrument for the real-time “measurement of optical absorption by aerosol particles. Sci. Total Environ. 36, 191–196 (1984)CrossRefGoogle Scholar
  19. Hansen, J., Nazarenko, L.: Soot climate forcing via snow and ice albedos. PNAS 101, 423–428 (2004)CrossRefGoogle Scholar
  20. Jacobson, M.Z.: Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res. 109, D21201 (2004). doi: 10.1029/2004JD004945 CrossRefGoogle Scholar
  21. Li, G., Zhang, R., Fan, J., Tie, X.: Impacts of black carbon aerosol on photolysis frequencies and ozone in the houston area. J. Geophys. Res. 110, D23206 (2005). doi: 10.1029/2005JD005898 CrossRefGoogle Scholar
  22. McConnel, J., et al.: 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317, 1381–1384 (2007)CrossRefGoogle Scholar
  23. Park, R., Jacob, D.J., Kumar, N., Yantosca, R.M.: Regional visibility statistics in the United States: natural and transboundary pollution influences, and implications for the Regional Haze Rule. Atmos. Environ. 40, 5405–5423 (2006). doi: 10.1016/j.atmosenv.2006.04.059 CrossRefGoogle Scholar
  24. Putaud, J.-P., Raes, F., Dingenen, R.V., et al.: A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38, 2579–2595 (2004)CrossRefGoogle Scholar
  25. Ramanathan, V., Carmichael, G.: Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008)CrossRefGoogle Scholar
  26. Ruellan, S., Cachier, H.: Characterisation of fresh particulate vehicular exhausts near a Paris high flow road. Atmos. Environ. 35, 453–468 (2001)CrossRefGoogle Scholar
  27. Safai, P.D., Kewat, S., Praveen, P.S., Rao, P.S.P., Momin, G.A., Ali, K., Devara, P.C.S.: Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos. Environ. 41, 2699–2709 (2007)CrossRefGoogle Scholar
  28. Streets, D.G., Bond, T.C., Carmichael, G.R., Fernandes, S.D., Fu, Q., He, D., Klimont, Z., Nelson, S.M., Tsai, N.Y., Wang, M.Q., Woo, J.H., Yarber, K.F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 108, 8809 (2003)CrossRefGoogle Scholar
  29. Tang, J., Wen, Y.O., Zhou, L.X.: Observational study of black carbon in clean air area of Western China. Q. J. Appl. Meteorol. 10(2), 160–170 (1999). In ChineseGoogle Scholar
  30. Tie, X., Cao, J.: Aerosol pollutions in eastern china; present and future impacts on environment. Particuology 7, 426–431 (2009)CrossRefGoogle Scholar
  31. Tie, X., Geng, F.H., Peng, L., Gao, W., Zhao, C.S.: Measurement and modeling of O3 variability in Shanghai, China; application of the WRF-Chem model. Atmos. Environ. 43, 4289–4302 (2009)CrossRefGoogle Scholar
  32. Tripathi, S.N., Dey, S., Tare, V., Satheesh, S.K.: Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys. Res. Lett. 32, L08802 (2005). doi: 10.1029/2005GL022515 CrossRefGoogle Scholar
  33. Warren, S., Wiscombe, W.: A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J. Atmos. Sci. 37, 2734–2745 (1980)CrossRefGoogle Scholar
  34. Watson, J.G., Chow, J.G., Chen, L.W.: Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5, 65–102 (2005)Google Scholar
  35. Wolff, E.W., Cachier, H.: Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. J. Geophys. Res. 103, 11033–11041 (1998)CrossRefGoogle Scholar
  36. Xu, B.Q., Cao, J.J., Hansen, J., Yao, T.D., Joswia, D.R., Wang, N.L., Wu, G.J., Wang, M., Zhao, H.B., Yang, W., Liu, X.Q., He, J.Q.: Black soot and the survival of Tibetan glaciers. PNAS 106, 22114–22118 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Junji Cao
    • 1
  • Xuexi Tie
    • 1
    • 2
  • Baiqing Xu
    • 3
  • Zhuzi Zhao
    • 1
    • 4
  • Chongshu Zhu
    • 1
  • Guohui Li
    • 5
  • Suixin Liu
    • 1
  1. 1.SKLLQG, Institute of Earth EnvironmentChinese Academy of ScienceXi’anChina
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan PlateauChinese Academy of ScienceBeijingChina
  4. 4.The Graduate School of Chinese Academy of ScienceXi’anChina
  5. 5.Molina Center for Energy and the EnvironmentLa JollaUSA

Personalised recommendations