Skip to main content
Log in

Sources, transport, and sinks of SO2 over the equatorial Pacific during the Pacific Atmospheric Sulfur Experiment

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The Pacific Atmospheric Sulfur Experiment (PASE) is the first sulfur-budget field experiment to feature simultaneous flux measurements of DMS marine emissions and SO2 deposition to the ocean surface. We make use of these data to constrain a 1-D chemical transport model to study the production and loss pathways for DMS and SO2 over the equatorial Pacific. Model results suggest that OH is the main sink for DMS in the boundary layer (BL), and the average DMS-to-SO2 conversion efficiency is ~73%. In an exploratory run involving the addition of 1 pptv of BrO as a second oxidant, a 14% increase in the DMS flux is needed beyond that based on OH oxidation alone. This BrO addition also reduces the DMS-to-SO2 conversion efficiency from 73% to 60%. The possibility of non-DMS sources of marine sulfur influencing the estimated conversion efficiency was explored and found to be unconvincing. For BL conditions, SO2 losses consist of 48% dry deposition, while transport loss to the BuL and aerosol scavenging each account for another 19%. The conversion of SO2 to H2SO4 consumes the final 14%. In the BuL, cloud scavenging removes 85% of the SO2, thus resulting in a decreasing vertical profile for SO2. The average SO2 dry deposition velocity from direct measurements (i.e., 0.36 cm sec−1) is approximately 50% of what is calculated from the 1-D model and the global GEOS-Chem model. This suggests that the current generation of global models may be significantly overestimating SO2 deposition rates over some tropical marine areas. Although the specific mechanism cannot be determined, speculation here is that the dry deposition anomalous results may point to the presence of a micro-surface chemical phenomenon involving partial saturation with either S(IV) and/or S(VI) DMS oxidation products. This could also appear as a pH drop in the ocean’s surface microfilm layer in this region. Finally, we propose that the enhanced SO2 level observed in the lower free troposphere versus that in the upper BuL during PASE is most likely the result of transported DMS/SO2-rich free-tropospheric air parcels from the east of the PASE sampling area, rather than an inadequate representation in the model of local convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander, B., Park, R.J., Jacob, D.J., Li, Q.B., Yantosca, R.M., Savarino, J., Lee, C.C.W., Thiemens, M.H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. J. Geophys. Res. Atmos. 110(D10), D10307 (2005). doi:10.1029/2004JD005659

    Article  Google Scholar 

  • Andreae, M.O., Raemdonck, H.: Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 221, 744–747 (1983)

    Article  Google Scholar 

  • Andreae, M.O., Elbert, W., de Mora, S.J.: Biogenic sulfur emissions and aerosols over the tropical South Atlantic – 3. Atmospheric dimethylsulfide, aerosols, and cloud condensation nuclei. J. Geophys. Res. 100(D6), 11335–11356 (1995)

    Article  Google Scholar 

  • Arsene, C., Barnes, I., Becker, K.H.: FT-IR product study of the photo-oxidation of dimethyl sulfide: temperature and O2 partial pressure dependence. Phys. Chem. Chem. Phys. 1, 5463–5470 (1999)

    Article  Google Scholar 

  • Arsene, C., Barnes, I., Becker, K.H., Schneider, W.F., Wallington, T.T., Mihalopoulos, N., Patroescu-Klotz, J.V.: Formation of methane sulfinic acid in the gas-phase OH-radical initiated oxidation of dimethyl sulfoxide. Environ. Sci. Technol. 36, 5155–5163 (2002)

    Article  Google Scholar 

  • Bandy, A., Thornton, D.C., Blomquist, B.W., Chen, S., Wade, T.P., Ianni, J.C., Mitchell, G.M., Nadler, W.: Chemistry of dimethyl sulfide in the equatorial Pacific atmosphere. Geophys. Res. Lett. 23(7), 741–744 (1996)

    Article  Google Scholar 

  • Bandy, A.R., Thornton, D.C., Tu, F.H., Blomquist, B.W., Nadler, W., Mitchell, G.M., Lenschow, D.H.: Determination of the vertical flux of dimethyl sulfide by eddy correlation and atmospheric pressure ionization mass spectrometry (APIMS). J. Geophys. Res. 107(D24), 4743 (2002). doi:10.1029/2002JD002472

    Article  Google Scholar 

  • Barnes, I., Bastian, V., Becker, K., Overath, R.: Kinetic studies of the reactions of IO, BrO, and ClO with dimethylsulfide. Int. Jour. Chem. Kin. 23, 579–591 (1991)

    Article  Google Scholar 

  • Barone, S.B., Turnipseed, A.A., Ravishankara, A.R.: Reaction of OH with dimethyl sulfide (DMS). 1. Equilibrium constant for OH + DMS reaction and the kinetics of the OH-DMS + O2 reaction. J. Phys. Chem. 100, 14694–14702 (1996)

    Article  Google Scholar 

  • Berglen, T.F., Berntsen, T.K., Isaksen, I.S.A., Sundet, J.K.: A global model of the coupled sulfur/oxidant chemistry in the troposphere: the sulfur cycle. J. Geophys. Res. Atmos. 109(D19), D19310 (2004). doi:10.1029/2003JD003948

    Article  Google Scholar 

  • Blomquist, B.W., Fairall, C.W., Huebert, B.J., Kieber, D.J., Westby, G.R.: DMS sea-air transfer velocity: direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model. Geophys. Res. Lett. 33(7), L07601 (2006). doi:10.1029/2006GL025735

    Article  Google Scholar 

  • Campanella, L., Cipriani, P., Martini, T.M., Sammartino, M.P., Tomassetti, M.: New enzyme sensor for sulfite analysis in sea and river water samples. Anal. Chim. Acta 305(1–3), 32–41 (1995)

    Article  Google Scholar 

  • Campolongo, F., Saltelli, A., Jensen, N.R., Wilson, J., Hjorth, J.: The role of multiphase chemistry in the oxidation of dimethylsulfide (DMS): a latitude dependent analysis. J. Atmos. Chem. 32, 327–356 (1999)

    Article  Google Scholar 

  • Chameides, W.L., Stelson, A.W.: Aqueous-phase chemical processes in deliquescent sea-salt aerosols: a mechanism that couples the atmospheric cycles of S and sea salt. J. Geophys. Res. Atmos. 97(D18), 20565–20580 (1992)

    Article  Google Scholar 

  • Charlson, R.J., Lovelock, J.E., Andreae, M.O., Warren, S.G.: Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661 (1987)

    Article  Google Scholar 

  • Chen, G., Davis, D.D., Kasibhatla, P., Bandy, A.R., Thornton, D.C., Huebert, B.J., Clarke, A.D., Blomquist, B.W.: A study of DMS oxidation in the tropics: comparison of christmas island field observations of DMS, SO2, and DMSO with model simulations. J. Atmos. Chem. 37(2), 137–160 (2000)

    Article  Google Scholar 

  • Choi, Y., Wang, Y., Zeng, T., Martin, R.V., Kurosu, T.P., Chance, K.: Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America. Geophys. Res. Lett. 32(2), L02805 (2005). doi:10.1029/2004GL021436

    Article  Google Scholar 

  • Choi, Y., Wang, Y., Zeng, T., Cunnold, D., Yang, E., Martin, R., Chance, K., Thouret, V., Edgerton, E.: Springtime transitions of NO2, CO, and O3 over North America: model evaluation and analysis. J. Geophys. Res. 113(D20), D20311 (2008a). doi:10.1029/2007JD009632

    Article  Google Scholar 

  • Choi, Y., Wang, Y., Yang, Q., Cunnold, D., Zeng, T., Shim, C., Luo, M., Eldering, A., Bucsela, E., Gleanson, J.: Spring to summer northward migration of high O3 over the western North Atlantic. Geophys. Res. Lett. 35(4), L04818 (2008b). doi:10.1029/2007GL032276

    Article  Google Scholar 

  • Clarke, A.D., Davis, D., Kapustin, V.N., Eisele, F., Chen, G., Paluch, I., Lenschow, D., Bandy, A.R., Thornton, D., Moore, K., Mauldin, L., Tanner, D., Litchy, M., Carroll, M.A., Collins, J., Albercook, G.: Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources. Science 282, 89–92 (1998)

    Article  Google Scholar 

  • Clarke, A.D., Shinozuka, Y., Kapustin, V.N., Howell, S., Huebert, B., Doherty, S., Anderson, T., et al.: Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: physiochemistry and optical properties. J. Geophys. Res. 109(D15), D15S09 (2004). doi:10.1029/2003JD004378

    Article  Google Scholar 

  • Clarke, A.D., Owens, S.R., Zhou, J.C.: An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res. Atmos. 111(D6), D06202 (2006). doi:10.1029/2005JD006565

    Article  Google Scholar 

  • Conley, S.A., Faloona, I., Miller, G.H., Lenschow, D.H., Blomquist, B., Bandy, A.: Closing the dimethyl sulfide budget in the tropical marine boundary layer during the pacific atmospheric sulfur experiment. Atmos. Chem. Phys. 9, 8745–8756 (2009)

    Article  Google Scholar 

  • Corbett, J.J., Fischbeck, P.S., Pandis, S.N.: Global nitrogen and sulfur inventories for oceangoing ships. J. Geophys. Res. 104(D3), 3457–3470 (1999)

    Article  Google Scholar 

  • Davis, D.D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., Berresheim, H.: DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and field observations of DMS, DMSO, DMSO2, H2SO4 (g), MSA (g), and MSA (p). J. Geophys. Res. 103(D1), 1657–1678 (1998)

    Article  Google Scholar 

  • Davis, D., Chen, G., Bandy, A., Thornton, D., Eisele, F., Mauldin, L., Tanner, D., Lenschow, D., Fuelberg, H., et al.: Dimethyl sulfide oxidation in the equatorial Pacific: comparison of model simulations with field observations for DMS, SO2, H2SO4(g), MSA(g), MS, and NSS. J. Geophys. Res. Atmos. 104(D5), 5765–5784 (1999)

    Article  Google Scholar 

  • Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD (2010)

  • Dyke, J., Ghosh, M., Goubet, M., Lee, E., Levita, G., Miqueu, K., Shallcross, D.: A study of the atmospherically relevant reaction between molecular chlorine and dimethylsulfide (DMS): establishing the reaction intermediate and measurement of absolute photoionization cross-sections. Chem. Phys. 324, 85–95 (2006)

    Article  Google Scholar 

  • Fairall, C.W., Hare, J.E., Edson, J.B., McGillis, W.: Parameterization and micrometeorological measurement of air-sea gas transfer. Bound. Layer Meteor. 96, 63–105 (2000)

    Article  Google Scholar 

  • Faloona, I.: Sulfur processing in the marine atmospheric boundary layer: a review and critical assessment of modeling uncertainties. Atmos. Environ. 43, 2841–2854 (2009)

    Article  Google Scholar 

  • Faloona, I., Conley, S.A., Blomquist, B., Clarke, A.D., Kapustin, V., Howell, S., Lenschow, D.H., Bandy, A.R.: Sulfur dioxide in the tropical marine boundary layer: dry deposition and heterogeneous oxidation observed during the Pacific Atmospheric Sulfur Experiment. J. Atmos. Chem. (2010). doi:10.1007/s10874-010-9155-0

    Google Scholar 

  • Fountoukis, C., Nenes, A.: ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+ -Ca2+ -Mg2+ -NH +4 -Na+ -SO 2–4 -NO3—Cl-H2O aerosols. Atmos. Chem. Phys. 7, 4639–4659 (2007)

    Article  Google Scholar 

  • Gershenzon, M., Davidovits, P., Jayne, J.T., Kolb, C.E., Worsnop, D.R.: Simultaneous uptake of DMS and ozone on water. J. Phys. Chem. A 105, 7031–7036 (2001)

    Article  Google Scholar 

  • Ghan, S.J., Taylor, K.E., Penner, J.E.: Model test of CCN-cloud albedo climate forcing. Geophys. Res. Lett. 17(5), 607–610 (1990)

    Article  Google Scholar 

  • Gurciullo, C., Lerner, B., Sievering, H., Pandis, S.N.: Heterogeneous sulfate production in the remote marine environment: Cloud processing and sea-salt particle contributions. J. Geophys. Res. Atmos. 104(D17), 21719–21731 (1999)

    Article  Google Scholar 

  • Hegg, D.A., Radke, L.F., Hobbs, P.V.: Particle production associated with marine clouds. J. Geophys. Res. 95(D9), 13917–13926 (1990)

    Article  Google Scholar 

  • Huebert, B.J., Howell, S., Laj, P., Johnson, J.E., Bates, T.S., Quinn, P.K., Yegorov, V., Clarke, A.D., Porter, J.N.: Observations of the atmospheric sulfur cycle on SAGA-3. J. Geophys. Res. 98(D9), 16985–16996 (1993)

    Article  Google Scholar 

  • Huebert, B.J., Blomquist, B.W., Hare, J.E., Fairall, C.W., Johnson, J.E., Bates, T.S.: Measurement of the sea-air DMS flux and transfer velocity using eddy correlation. Geophys. Res. Lett. 31(23), L23113 (2004). doi:10.1029/2004GL021567

    Article  Google Scholar 

  • Hynes, A., Wine, P., Semmes, D.: Kinetics and mechanisms of OH reactions with organic sulfides. J. Phys. Chem. 90, 4148–4156 (1986)

    Article  Google Scholar 

  • Ingham, T., Bauer, D., Sander, R., Crutzen, P., Crowley, J.: Kinetics and products of the reactions of BrO + DMS and Br + DMS at 298 K. J. Phys. Chem. 103, 7199–7209 (1999)

    Article  Google Scholar 

  • Jaeglé, L., et al.: Global sea salt emissions: New constraints from in situ, AERONET, and MODIS observations, in preparation for submission to Atmos. Chem. Phys. Discuss. (2010)

  • Jefferson, A., Tanner, D.J., Eisele, F.L., Huey, J.W., Davis, D.D., Chen, G., Torres, A., Berresheim, H.: OH oxidation chemistry and MSA formation in the coastal Antarctic boundary layer. J. Geophys. Res. 103(D1), 1647–1656 (1998)

    Article  Google Scholar 

  • Kettle, A.J., Andreae, M.O., Amouroux, D., Andreae, T.W., Bates, T.S., Berresheim, H., Bingemer, H., Boniforti, R., et al.: A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Bio. Cycles 13(2), 399–444 (1999)

    Article  Google Scholar 

  • Kloster, S., Feichter, J., Reimer, E.M., Six, K.D., Stier, P., Wetzel, P.: DMS cycle in the marine ocean-atmosphere system – a global model study. Biogeosciences 3(1), 29–51 (2006)

    Article  Google Scholar 

  • Koch, D., Schmidt, G.A., Field, C.V.: Sulfur, sea salt, and radionuclide aerosols in GISS ModelE. J. Geophys. Res. Atmos. 111(D6), D06206 (2006). doi:10.1029/2004JD005550

    Article  Google Scholar 

  • Kritz, M.A.: Exchange of sulfur between the free troposphere, marine boundary layer, and the sea surface. J. Geophys. Res. 87(C11), 8795–8803 (1982)

    Article  Google Scholar 

  • Kukui, A., Borissenko, D., Laverdet, G., Le Bras, G.: Gas-phase reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid using turbulent flow reactor and chemical ionization mass spectrometry. J. Phys. Chem. A 107, 5732–5742 (2003)

    Article  Google Scholar 

  • Lee, Y.N., Zhou, X.: Aqueous reaction kinetics of ozone and dimethylsulfide and its atmospheric importance. J. Geophys. Res. 99(D2), 3597–3605 (1994)

    Article  Google Scholar 

  • Legrand, M., Sciare, J., Jourdain, B., Genthon, C.: Subdaily variations of atmospheric dimethylsulfide, dimethylsulfoxide, methanesulfonate, and non-seasalt sulfate aerosols in the atmospheric boundary layer at Dumont d’Urville (coastal Antarctica) during summer. J. Geophys. Res. Atmos. 106(D13), 14409–14422 (2001)

    Article  Google Scholar 

  • Liu, X.H., Penner, J.E., Das, B.Y., Bergmann, D., Rodriguez, J.M., Strahan, S., Wang, M.H., Feng, Y.: Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. J. Geophys. Res. Atmos. 112(D11), D11212 (2007). doi:10.1029/2006JD008216

    Article  Google Scholar 

  • Lovelock, J.E., Maggs, R.J., Rasmussen, R.A.: Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237, 452–453 (1972)

    Article  Google Scholar 

  • Mauldin III, R.L., Frost, G.J., Chen, G., Tanner, D.J., Prevot, A.S.H., Davis, D.D., Eisele, F.L.: OH measurements during the first aerosol characterization experiment (ACE 1): observations and model comparisons. J. Geophys. Res. Atmos. 103(D13), 16713–16729 (1998)

    Article  Google Scholar 

  • Mauldin III, R.L., Tanner, D.J., Heath, J.A., Huebert, B.J., Eisele, F.L.: Observations of H2SO4 and MSA during PEM-Tropics A. J. Geophys. Res. 104(D5), 5801–5816 (1999)

    Article  Google Scholar 

  • Nowak, J.B., Davis, D.D., Chen, G., Eisele, F.L., Mauldin III, R.L., Tanner, D.J., Cantrell, C., Kosciuch, E., Bandy, A., Thornton, D., Clarke, A.: Airborne observations of DMSO, DMS, and OH at marine tropical latitudes. Geophys. Res. Lett. 28(11), 2201–2204 (2001)

    Article  Google Scholar 

  • Park, R.J., Jacob, D.J., Field, B.D., Yantosca, R.M., Chin, M.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. J. Geophys. Res. 109(D15), D15204 (2004). doi:10.1029/2003JD004473

    Article  Google Scholar 

  • Petelski, T.: Marine aerosol fluxes over open sea calculated from vertical concentration gradients. J. Aerosol Sci. 34, 359–371 (2003)

    Article  Google Scholar 

  • Read, K.A., Lewis, A.C., Bauguitte, S., Rankin, A.M., Salmon, R.A., Wolff, E.W., Saiz-Lopez, A., Bloss, W.J., Heard, D.E., Lee, J.D., Plane, J.M.C.: DMS and MSA measurements in the Antarctic boundary layer: impact of BrO on MSA production. Atmos. Chem. Phys. 8, 2985–2997 (2008a)

    Article  Google Scholar 

  • Read, K.A., Mahajan, A.S., Carpenter, L.J., Evans, M.J., Faria, B.V.E., Heard, D.E., Hopkins, J.R., Lee, J.D., et al.: Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453(7199), 1232–1235 (2008b). doi:10.1038/nature07035

    Article  Google Scholar 

  • Ridley, B.A., Grahek, F.E., Walega, J.G.: A small, high-sensitivity, medium-response ozone detector for measurements from light aircraft. J. Atmos. Oceanic Tech. 9, 142–148 (1992)

    Article  Google Scholar 

  • Rolph, G.D.: Real-time Environmental Applications and Display sYstem (READY) Website (http://ready.arl.noaa.gov). NOAA Air Resources Laboratory, Silver Spring, MD (2010)

  • Russell, L.M., Lenschow, D.H., Laursen, K.K., Krummel, P.B., Siems, S.T., Bandy, A.R., Thornton, D.C., Bates, T.S.: Bidirectional mixing in an ACE 1 marine boundary layer overlain by a second turbulent layer. J. Geophys. Res. Atmos. 103(D13), 16411–16432 (1998)

    Article  Google Scholar 

  • Saiz-Lopez, A., Mahajan, A.S., Salmon, R.A., Bauguitte, S.J.B., Jones, A.E., Roscoe, H.K., Plane, J.M.C.: Boundary layer halogens in coastal Antarctica. Science 317, 348–351 (2007)

    Article  Google Scholar 

  • Sander, S., Golden, D., Kurylo, M., Moortgat, G., Wine, P., Ravishankara, A., Kolb, C., Molina, M., Finlayson-Pitts, B., Huie, R.: Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 15. JPL Publication 06-2 (2006)

  • Scaduto, R.C.: Oxidation of DMSO and methanesulfinic acid by the hydroxyl radical. Free Radical Biol. Med. 18, 271–277 (1995)

    Article  Google Scholar 

  • Sciare, J., Kanakidou, M., Mihalopoulos, N.: Diurnal and seasonal variations of atmospheric dimethylsuloxide at Amsterdam Island in the southern Indian Ocean. J. Geophys. Res. Atmos. 105(D13), 17257–17265 (2000)

    Article  Google Scholar 

  • Sehested, K., Holcman, J.: A pulse radiolysis study of the OH radical induced autoxidation of methanesulfinic acid. Radiat. Phys. Chem. 47, 357–360 (1996)

    Article  Google Scholar 

  • Seinfeld, J., Pandis, S.: Atmospheric chemistry and physics: From air pollution to climate change. Wiley, New York (1998)

    Google Scholar 

  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G.: A description of the advanced research WRF version 2. NCAR Tech. Note (2005)

  • Slinn, S.A., Slinn, W.G.N.: Modeling of atmospheric particulate deposition to natural waters. Atmospheric Pollutants in Natural Waters, 23-53, Ed. S. J. Eisenreich. Ann Arbor. Sci., Michigan (1981)

  • Smith, M.H., Park, P.M., Consterdine, I.E.: Marine aerosol concentrations and estimated fluxes over the sea. Q. J. R. Meteorol. Soc. 119, 809–824 (1993)

    Article  Google Scholar 

  • Thomas, M.A., Suntharalingam, P., Pozzoli, L., Rast, S., Devasthale, A., Kloster, S., Feichter, J., Lenton, T.M.: Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario. Atmos. Chem. Phys. 10, 7425–7438 (2010)

    Article  Google Scholar 

  • Thornton, D.C., Bandy, A.R., Tu, F.H., Blomquist, B.W., Mitchell, G.M., Nadler, W., Lenschow, D.H.: Fast airborne sulfur dioxide measurements by Atmospheric Pressure Ionization Mass Spectrometry (APIMS). J. Geophys. Res. Atmos. 107(D22), 4632 (2002). doi:10.1029/2002JD002289

    Article  Google Scholar 

  • Urbanski, S.P., Stickel, R.E., Wine, P.H.: Mechanistic and kinetic study of the gas-phase reaction of hydroxyl radical with dimethyl sulfoxide. J. Phys. Chem. A 102, 10522–10529 (1998)

    Article  Google Scholar 

  • Verma, S., Boucher, O., Reddy, M.S., Upadhyaya, H.C., Le Van, P., Binkowski, F.S., Sharma, O.P.: Modeling and analysis of aerosol processes in an interactive chemistry general circulation model. J. Geophys. Res. Atmos. 112(D3), D03207 (2007). doi:10.1029/2005JD006077

    Article  Google Scholar 

  • Wang, Y., Jacob, D.J., Logan, J.A.: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry. 1. Model formulation. J. Geophys. Res. 103(D9), 10713–10725 (1998)

    Article  Google Scholar 

  • Wang, Y., Liu, S.C., Hongbin, Y., Sandholm, S.T., Chen, T., Blake, D.R.: Influence of convection and biomass burning outflow on tropospheric chemistry over the tropical Pacific. J. Geophys. Res. 105(D7), 9321–9333 (2000)

    Article  Google Scholar 

  • Wang, Y., Liu, S.C., Wine, P.H., Davis, D.D., Sandholm, S.T., Atlas, E.L., Avery, M.A., Blake, D.R., Blake, N.J., Brune, W.H., et al.: Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B. J. Geophys. Res. Atmos. 106(D23), 32733–32747 (2001)

    Article  Google Scholar 

  • Wang, Y., Choi, Y., Zeng, T., Ridley, B., Blake, N., Blake, D., Flocke, F.: Late-spring increase of trans-Pacific pollution transport in the upper troposphere. Geophys. Res. Lett. 33(1), L01811 (2006). doi:10.1029/2005GL024975

    Article  Google Scholar 

  • Wang, Y., Choi, Y., Zeng, T., Davis, D., Buhr, M., Huey, L.G., Neff, W.: Assessing the photochemical impact of snow NOx emissions over Antarctica during ANTCI 2003. Atmos. Environ. 42, 2849–2863 (2008)

    Article  Google Scholar 

  • Weber, R.J., Moore, K., Kapustin, V., Clarke, A., Mauldin, R.L., Kosciuch, E., Cantrell, C., Eisele, F., Anderson, B., Thornhill, L.: Nucleation in the equatorial Pacific during PEM-Tropics B: Enhanced boundary layer H2SO4 with no particle production. J. Geophys. Res 106(D23), 32767–32776 (2001)

    Article  Google Scholar 

  • Wesely, M.L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 23(6), 1293–1304 (1989)

    Article  Google Scholar 

  • Williams, M.B., Campuzano-Jost, P., Bauer, D., Hynes, A.J.: Kinetics and mechanistic studies of the OH-initiated oxidation of dimethylsulfide at low temperature – A reevaluation of the rate coefficient and branching ratio. Chem. Phys. Lett. 344, 61–67 (2001)

    Article  Google Scholar 

  • Yvon, S.A., Saltzman, E.S., Cooper, D.J., Bates, T.S., Thompson, A.M.: Atmospheric sulfur cycling in the tropical Pacific marine boundary layer (12oS, 135oW): A comparison of field data and model results. 1. Dimethylsulfide. J. Geophys. Res. 101(D3), 6899–6909 (1996)

    Article  Google Scholar 

  • Zeng, T., Wang, Y., Chance, K., Browell, E.V., Ridley, B.A., Atlas, E.L.: Widespread persistent near-surface ozone depletion at northern high latitudes in spring. Geophys. Res. Lett. 30(24), 2298 (2003). doi:10.1029/2003GL018587

    Article  Google Scholar 

  • Zeng, T., Wang, Y., Chance, K., Blake, N., Blake, D., Ridley, B.: Halogen-driven low-altitude O3 and hydrocarbon losses in spring at northern high latitudes. J. Geophys. Res. 111(D17), D17313 (2006). doi:10.1029/2005JD006706

    Article  Google Scholar 

  • Zhao, C., Wang, Y., Choi, Y., Zeng, T.: Summertime impact of convective transport and lightning NOx production over North America: modeling dependence on meteorological simulations. Atmos. Chem. Phys. 9, 4315–4327 (2009a)

    Article  Google Scholar 

  • Zhao, C., Wang, Y., Zeng, T.: East China plains: a “basin” of ozone pollution. Environ. Sci. Tech. 43, 1911–1915 (2009b)

    Article  Google Scholar 

  • Zhao, C., Wang, Y.: Assimilated inversion of NOx emissions over east Asia using OMI NO2 column measurements. Geophys. Res. Lett. 36(6), L06805 (2009). doi:10.1029/2008GL037123

    Article  Google Scholar 

  • Zhao, C., Wang, Y., Yang, Q., Fu, R., Cunnold, D., Choi, Y.: Impact of East Asian summer monsoon on the air quality over China: view from space. J. Geophys. Res. 115(D9), D09301 (2010). doi:10.1029/2009JD012745

    Article  Google Scholar 

  • Zhu, L., Nenes, A., Wine, P.H., Nicovich, J.M.: Effects of aqueous organosulfur chemistry on particulate methanesulfonate to non-sea salt sulfate ratios in the marine atmosphere. J. Geophys. Res. 111(D5), D05316 (2006). doi:10.1029/2005JD006326

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by a grant from the atmospheric chemistry program of the National Science Foundation (grant #ATM-0627227) through a subcontract from Drexel University to the Georgia Institute of Technology. We thank Gao Chen for his help in developing aspects of the sulfur model. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.php) used in this publication. Ozone data are from I.B. Pollack, T.L. Campos, and A.J. Weinheimer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burton Alonza Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, B.A., Wang, Y., Gu, D. et al. Sources, transport, and sinks of SO2 over the equatorial Pacific during the Pacific Atmospheric Sulfur Experiment. J Atmos Chem 68, 27–53 (2011). https://doi.org/10.1007/s10874-010-9177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-010-9177-7

Keywords

Navigation